一些方便的小工具,参考 Paddle 的 API 设计以及 Torch Toolbox API 设计
注意:Python 需至少 3.7.0 版本,PaddlePaddle 需至少 2.3.0 版本(会跟随 paddle 版本变化)
pip install pptb==0.2.0
由于仍处于早期开发设计阶段,API 较为不稳定,安装时请一定要指定版本号
这里以 AI Studio 为例
git clone https://github.com/cattidea/paddle-toolbox.git work/paddle-toolbox/
# 如果下载太慢导致出错请使用下面的命令
# git clone https://hub.fastgit.org/cattidea/paddle-toolbox.git work/paddle-toolbox/
之后在你的 Notebook 或者 Python 文件中加入以下代码
import sys
sys.path.append('/home/aistudio/work/paddle-toolbox/')
import paddle
from pptb.nn import LabelSmoothingLoss, LabelSmoothingCrossEntropyLoss
label_smooth_epision = 0.1
loss_function = paddle.nn.CrossEntropyLoss()
# 如果需要标签平滑后 Loss,将下面这行替换成后面那一行即可
loss_function = LabelSmoothingLoss(
paddle.nn.CrossEntropyLoss(soft_label=True),
label_smooth_epision
)
# 由于 CrossEntropyLoss 的 LabelSmoothing 比较常用,因此也可以使用下面这个别名
loss_function = LabelSmoothingCrossEntropyLoss(label_smooth_epision)
import paddle
from pptb.optimizer.lr import CosineWarmup
# ...
train_batch_size = 32
learning_rate = 3e-4
step_each_epoch = len(train_set) // train_batch_size
num_epochs = 40
warmup_epochs = 3
lr_scheduler = CosineWarmup(
learning_rate,
total_steps = num_epochs * step_each_epoch,
warmup_steps = warmup_epochs * step_each_epoch,
warmup_start_lr = 0.0,
cosine_end_lr = 0.0,
last_epoch = -1
)
import paddle
from pptb.tools import mixup_data, mixup_criterion, mixup_metric
# ...
use_mixup = True
mixup_alpha = 0.2
for X_batch, y_batch in train_loader():
# 使用 mixup 与不使用 mixup 代码的前向传播部分代码差异对比
if use_mixup:
X_batch_mixed, y_batch_a, y_batch_b, lam = mixup_data(X_batch, y_batch, mixup_alpha)
predicts = model(X_batch_mixed)
loss = mixup_criterion(loss_function, predicts, y_batch_a, y_batch_b, lam)
acc = mixup_metric(paddle.metric.accuracy, predicts, y_batch_a, y_batch_b, lam)
else:
predicts = model(X_batch)
loss = loss_function(predicts, y_batch)
acc = paddle.metric.accuracy(predicts, y_batch)
# ...
除了用于处理 paddle 里 Tensor
的 mixup_data
,还可以使用 mixup_data_numpy
处理 numpy 的 ndarray。
和 Mixup 一样,只需要将 mixup_data
换为 cutmix_data
即可,与 mixup_data
不同的是,cutmix_data
还接收一个额外参数 axes
用于控制需要 mix 的是哪几根 axis,默认 axes = [2, 3]
,也即 NCHW
格式图片数据对应的 H
与 W
两根 axis。
用于方便管理使用 Mixup 和 Cutmix
import paddle
from pptb.tools import MixingDataController
# ...
mixing_data_controller = MixingDataController(
mixup_prob=0.3,
cutmix_prob=0.3,
mixup_alpha=0.2,
cutmix_alpha=0.2,
cutmix_axes=[2, 3],
loss_function=paddle.nn.CrossEntropyLoss(),
metric_function=paddle.metric.accuracy,
)
for X_batch, y_batch in train_loader():
X_batch_mixed, y_batch_a, y_batch_b, lam = mixing_data_controller.mix(X_batch, y_batch, is_numpy=False)
predicts = model(X_batch_mixed)
loss = mixing_data_controller.loss(predicts, y_batch_a, y_batch_b, lam)
acc = mixing_data_controller.metric(predicts, y_batch_a, y_batch_b, lam)
# ...
提供更加丰富的 backbone,所有模型均会提供预训练权重
合入 paddle 主线的模型会在新版本发布时移除,避免 API 不同步导致的问题
已支持一些 PaddleClas 下的预训练模型,以及比较新的 ConvMixer
- GoogLeNet(已并入 paddle 主线且已移除,请直接使用 paddle.vision.models.GoogLeNet)
- Incetpionv3(已并入 paddle 主线且已移除,请直接使用 paddle.vision.models.InceptionV3)
- ResNeXt(已并入 paddle 主线且已移除,请直接使用 paddle.vision.models.ResNet)
- ShuffleNetV2(已并入 paddle 主线且已移除,请直接使用 paddle.vision.models.ShuffleNetV2)
- MobileNetV3(已并入 paddle 主线且已移除,请直接使用 paddle.vision.models.MobileNetV3Large 和 paddle.vision.models.MobileNetV3Small)
- ConvMixer(预训练权重转自 PyTorch)
import paddle
import pptb.vision.models as ppmodels
model = ppmodels.convmixer_768_32(pretrained=True)
PS: 如果这些模型无法满足你的需求的话,可以试试囊括了很多比较新的模型的 ppim~
Model Name | Kernel Size | Patch Size | Top-1 | Top-5 |
---|---|---|---|---|
convmixer_768_32 | 7 | 7 | 0.7974(-0.0042) | 0.9486 |
convmixer_1024_20_ks9_p14 | 9 | 14 | 0.7681(-0.0013) | 0.9335 |
convmixer_1536_20 | 9 | 7 | 0.8083(-0.0054) | 0.9557 |
一些近期想做的功能
- Cutmix
- Activation、Mish
- RandomErasing
- AutoAugment、RandAugment
- Transform Layer(使用 Layer 实现某些 Transform)
- 更多 vision models
- Xception
- Swin Transformer
- CvT
- 完整的单元测试