-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Simultaneous deconvolution prototype (#31)
* Start writing the quasiloglikelihood function * Sketch the logistic growth model * Prototype quasiloglikelihood calculation in a numerically stable manner * Minor name changes * Sketch the fix to log mutations calculation. * Add prototype of the dynamics model and quasiloglikelihood * Sketch the validation and padding function * Add notebook prototype * Refactor code
- Loading branch information
1 parent
cc05a57
commit 79b9354
Showing
6 changed files
with
644 additions
and
53 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: percent | ||
# format_version: '1.3' | ||
# jupytext_version: 1.16.6 | ||
# kernelspec: | ||
# display_name: Python 3 (ipykernel) | ||
# language: python | ||
# name: python3 | ||
# --- | ||
|
||
# %% | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from subplots_from_axsize import subplots_from_axsize | ||
|
||
import jax.numpy as jnp | ||
|
||
import covvfit._quasimultinomial as qm | ||
import covvfit._deconvolution as dec | ||
|
||
# %% | ||
A = jnp.asarray( | ||
[ | ||
[1, 1, 0, 0, 0, 0, 1], | ||
[1, 0, 1, 1, 0, 0, 1], | ||
[0, 0, 0, 1, 1, 1, 1], | ||
[0, 1, 1, 0, 1, 0, 1], | ||
] | ||
) | ||
|
||
n_variants = A.shape[0] | ||
n_loci = A.shape[1] | ||
|
||
print( | ||
f"Variant definition matrix has rank {jnp.linalg.matrix_rank(A)}. We require rank {n_variants}." | ||
) | ||
|
||
|
||
n_cities = 2 | ||
|
||
|
||
relative_offsets = jnp.asarray( | ||
[ | ||
[0.3, -0.3, -4.0], | ||
[0.2, -0.45, -5.0], | ||
] | ||
) | ||
relative_growth_rates = jnp.asarray([0.2, 1.0, 5.0]) | ||
|
||
n_timepoints = 40 | ||
|
||
timepoints = jnp.asarray( | ||
[ | ||
jnp.linspace(0, 1, n_timepoints), | ||
jnp.linspace(0.1, 0.9, n_timepoints), | ||
] | ||
) | ||
|
||
assert relative_offsets.shape == (n_cities, n_variants - 1) | ||
assert relative_growth_rates.shape == (n_variants - 1,) | ||
|
||
# %% | ||
model = dec.JointLogisticGrowthParams( | ||
relative_growths=relative_growth_rates, | ||
relative_offsets=relative_offsets, | ||
) | ||
|
||
log_ys = model.predict_log_abundance(timepoints) | ||
ys = jnp.exp(log_ys) | ||
|
||
fig, axs = subplots_from_axsize( | ||
1, n_cities, axsize=(2, 1.5), sharex=True, sharey=True, dpi=180 | ||
) | ||
|
||
for city, ax in enumerate(axs.ravel()): | ||
y = ys[city] | ||
|
||
for variant in range(n_variants): | ||
ax.plot(timepoints[city], y[:, variant], c=f"C{variant}") | ||
|
||
ax.set_title(f"City {city}") | ||
ax.set_xlabel("Time") | ||
ax.set_ylabel("Variant abundances") | ||
ax.spines[["top", "right"]].set_visible(False) | ||
|
||
# %% | ||
ms_perfect = jnp.einsum("vm,ctv->ctm", A, ys) | ||
|
||
rng = np.random.default_rng(42) | ||
|
||
sample_size = 20 | ||
|
||
ms_sampled = rng.binomial(sample_size, jnp.clip(ms_perfect, 1e-5, 1 - 1e-5)) / float( | ||
sample_size | ||
) | ||
|
||
# %% | ||
fig, axs = subplots_from_axsize( | ||
1, n_cities, axsize=(2, 1.5), sharex=True, sharey=True, dpi=180 | ||
) | ||
|
||
markers = list(".osP+xDv^*hX") | ||
|
||
for city, ax in enumerate(axs.ravel()): | ||
for locus in range(n_loci): | ||
ax.plot( | ||
timepoints[city], | ||
ms_perfect[city, :, locus], | ||
c=f"C{locus}", | ||
linestyle="-", | ||
alpha=0.3, | ||
) | ||
ax.scatter( | ||
timepoints[city], | ||
ms_sampled[city, :, locus], | ||
c=f"C{locus}", | ||
s=2, | ||
marker=markers[locus], | ||
) | ||
|
||
ax.set_title(f"City {city}") | ||
ax.set_xlabel("Time") | ||
ax.set_ylabel("Mutation probability") | ||
ax.spines[["top", "right"]].set_visible(False) | ||
|
||
# %% | ||
log_A = dec.log_matrix(jnp.asarray(A, dtype=float)) | ||
|
||
|
||
problem_data = dec._DeconvolutionProblemData( | ||
n_cities=n_cities, | ||
n_variants=n_variants, | ||
n_mutations=n_loci, | ||
ts=timepoints, | ||
mutations=ms_sampled, | ||
mask=jnp.ones_like(ms_sampled), | ||
n_quasibin=jnp.ones_like(ms_sampled), | ||
overdispersion=jnp.ones_like(ms_sampled), | ||
log_variant_defs=log_A, | ||
) | ||
|
||
# %% | ||
quasiloglikelihood_fn = dec._generate_quasiloglikelihood_function(problem_data) | ||
|
||
|
||
def loss_fn(params) -> float: | ||
return -quasiloglikelihood_fn(params) | ||
|
||
|
||
def loss_fn_vector(theta) -> float: | ||
params = dec.JointLogisticGrowthParams.from_vector(theta, n_variants) | ||
return loss_fn(params) | ||
|
||
|
||
# %% | ||
theta0 = 0.0 * model.to_vector() | ||
|
||
theta_star = qm.jax_multistart_minimize(loss_fn_vector, theta0).x | ||
model_star = dec.JointLogisticGrowthParams.from_vector(theta_star, n_variants) | ||
|
||
# %% | ||
fig, axs = subplots_from_axsize( | ||
1, 2, axsize=(2, 1.5), sharex=False, sharey=False, dpi=180 | ||
) | ||
for ax in axs: | ||
ax.spines[["top", "right"]].set_visible(False) | ||
|
||
ax = axs[0] | ||
ax.scatter( | ||
jnp.arange(n_variants - 1), | ||
model.relative_growths, | ||
marker=".", | ||
label="Ground truth", | ||
c="limegreen", | ||
) | ||
ax.scatter( | ||
jnp.arange(n_variants - 1), | ||
model_star.relative_growths, | ||
marker="x", | ||
label="Inferred", | ||
c="darkblue", | ||
) | ||
ax.set_xlabel("Growth rates (relative to 0th variant)") | ||
|
||
ax = axs[1] | ||
x_ax = jnp.arange(len(model.relative_offsets.ravel())) | ||
ax.scatter( | ||
x_ax, model.relative_offsets.ravel(), marker=".", label="Ground truth", c="black" | ||
) | ||
ax.scatter( | ||
x_ax, | ||
model_star.relative_offsets.ravel(), | ||
marker="x", | ||
label="Inferred", | ||
c="darkblue", | ||
) | ||
|
||
ax.set_xlabel("Offsets (relative to 0th variant)") | ||
|
||
# %% |
Oops, something went wrong.