Skip to content

Commit

Permalink
reorder multilabel <-> token examples
Browse files Browse the repository at this point in the history
  • Loading branch information
jwmueller authored Nov 14, 2022
1 parent e48d7d1 commit fd80d47
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@ To quickly learn the basics of running cleanlab on your own data, we recommend f
| 8 | [fasttext_amazon_reviews](fasttext_amazon_reviews/fasttext_amazon_reviews.ipynb) | Finding label errors in Amazon Reviews text dataset using a cleanlab-compatible [FastText model](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/fasttext.py) |
| 9 | [multiannotator_cifar10](multiannotator_cifar10/multiannotator_cifar10.ipynb) | Iteratively improve consensus labels and trained classifier from data labeled by mulitple annotators. |
| 10 | [outlier_detection_cifar10](outlier_detection_cifar10/outlier_detection_cifar10.ipynb) | Train AutoML for image classification and use it to detect out-of-distribution images. |
| 11 | [entity_recognition](entity_recognition/entity_recognition_training.ipynb) | Train Transformer model for Named Entity Recognition and produce out-of-sample `pred_probs` for cleanlab.token_classification. |
| 12 | [multilabel_classification](multilabel_classification/image_tagging.ipynb) | Find label errors in an image tagging dataset ([CelebA](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)) using a [Pytorch model](multilabel_classification/pytorch_network_training.ipynb) you can easily train for multi-label classification. |
| 11 | [multilabel_classification](multilabel_classification/image_tagging.ipynb) | Find label errors in an image tagging dataset ([CelebA](https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)) using a [Pytorch model](multilabel_classification/pytorch_network_training.ipynb) you can easily train for multi-label classification. |
| 12 | [entity_recognition](entity_recognition/entity_recognition_training.ipynb) | Train Transformer model for Named Entity Recognition and produce out-of-sample `pred_probs` for cleanlab.token_classification. |
| 13 | [cnn_coteaching_cifar10](cnn_coteaching_cifar10) | Train a [Convolutional Neural Network](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/cifar_cnn.py) on noisily labeled Cifar10 image data using cleanlab with [coteaching](https://github.com/cleanlab/cleanlab/blob/master/cleanlab/experimental/coteaching.py). |


Expand Down

0 comments on commit fd80d47

Please sign in to comment.