A pythonic client for DataStax Astra DB.
This README targets AstraPy version 2.0+. Click here for v1 and here for the v0 API (which you should not really be using by now).
Install with pip install astrapy
.
Get the API Endpoint and the Token to your Astra DB instance at astra.datastax.com.
Try the following code after replacing the connection parameters:
from astrapy import DataAPIClient
from astrapy.constants import VectorMetric
from astrapy.ids import UUID
from astrapy.info import CollectionDefinition
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
# Connect and create the Database object
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
# Create a vector collection
my_collection = my_database.create_collection(
"dreams_collection",
definition=(
CollectionDefinition.builder()
.set_vector_dimension(3)
.set_vector_metric(VectorMetric.COSINE)
.build()
)
)
# Populate the collection with some documents
my_collection.insert_many(
[
{
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
"summary": "Riding the waves",
"tags": ["sport"],
"$vector": [0, 0.2, 1],
},
{
"summary": "Friendly aliens in town",
"tags": ["scifi"],
"$vector": [-0.3, 0, 0.8],
},
{
"summary": "Meeting Beethoven at the dentist",
"$vector": [0.2, 0.6, 0],
},
],
)
my_collection.update_one(
{"tags": "sport"},
{"$set": {"summary": "Surfers' paradise"}},
)
# Run a vector search
cursor = my_collection.find(
{},
sort={"$vector": [0, 0.2, 0.4]},
limit=2,
include_similarity=True,
)
for result in cursor:
print(f"{result['summary']}: {result['$similarity']}")
# This would print:
# Surfers' paradise: 0.98238194
# Friendly aliens in town: 0.91873914
# Resource cleanup
my_collection.drop()
Next steps:
- More info and usage patterns are given in the docstrings of classes and methods
- Data API reference
- AstraPy reference
- Package on PyPI
The example above uses a collection, where schemaless "documents" can be stored and retrieved. Here is an equivalent code that uses Tables, i.e. uniform, structured data where each row has the same columns, which are of a specific type:
from astrapy import DataAPIClient
from astrapy.constants import VectorMetric
from astrapy.data_types import DataAPIVector
from astrapy.info import (
CreateTableDefinition,
ColumnType,
TableVectorIndexDefinition,
TableVectorIndexOptions,
)
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
# Connect and create the Database object
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
# Create a table and a vector index on it
table_definition = (
CreateTableDefinition.builder()
.add_column("dream_id", ColumnType.INT)
.add_column("summary", ColumnType.TEXT)
.add_set_column("tags", ColumnType.TEXT)
.add_vector_column("dream_vector", dimension=3)
.add_partition_by(["dream_id"])
.build()
)
index_options=TableVectorIndexOptions(
metric=VectorMetric.COSINE,
)
my_table = my_database.create_table("dreams_table", definition=table_definition, if_not_exists=True)
my_table.create_vector_index("dreams_table_vec_idx", column="dream_vector", options=index_options, if_not_exists=True)
# Populate the table with some rows
my_table.insert_many(
[
{
"dream_id": 103,
"summary": "Riding the waves",
"tags": ["sport"],
"dream_vector": DataAPIVector([0, 0.2, 1]),
},
{
"dream_id": 119,
"summary": "Friendly aliens in town",
"tags": ["scifi"],
"dream_vector": DataAPIVector([-0.3, 0, 0.8]),
},
{
"dream_id": 37,
"summary": "Meeting Beethoven at the dentist",
"dream_vector": DataAPIVector([0.2, 0.6, 0]),
},
],
)
my_table.update_one(
{"dream_id": 103},
{"$set": {"summary": "Surfers' paradise"}},
)
# Run a vector search
cursor = my_table.find(
{},
sort={"dream_vector": DataAPIVector([0, 0.2, 0.4])},
limit=2,
include_similarity=True,
)
for result in cursor:
print(f"{result['summary']}: {result['$similarity']}")
# This would print:
# Surfers' paradise: 0.98238194
# Friendly aliens in town: 0.91873914
# Resource cleanup
my_table.drop()
For more on Tables, consult the Data API documentation about Tables.
The main difference when targeting e.g. a Hyper-Converged Database (HCD)
installation is how the client is
initialized. Here is a short example showing just how to get to a Database
(what comes next is unchaged compared to using Astra DB).
from astrapy import DataAPIClient
from astrapy.constants import Environment
from astrapy.authentication import UsernamePasswordTokenProvider
# Build a token
tp = UsernamePasswordTokenProvider("username", "password")
# Initialize the client and get a "Database" object
client = DataAPIClient(environment=Environment.HCD)
database = client.get_database("http://localhost:8181", token=tp)
For more on this case, please consult the dedicated reference.
AstraPy's abstractions for working at the data and admin layers are structured as depicted by this diagram:
Here's a small admin-oriented example:
from astrapy import DataAPIClient
# this must have "Database Administrator" permissions:
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
my_client = DataAPIClient(ASTRA_DB_APPLICATION_TOKEN)
my_astra_admin = my_client.get_admin()
database_list = list(my_astra_admin.list_databases())
db_info = database_list[0].info
print(db_info.name, db_info.id, db_info.region)
my_database_admin = my_astra_admin.get_database_admin(db_info.id)
my_database_admin.list_keyspaces()
my_database_admin.create_keyspace("my_dreamspace")
The package comes with its own set of exceptions, arranged in this hierarchy:
For more information, and code examples, check out the docstrings and consult the API reference linked above.
You can configure many aspects of the interaction with the API by providing customized "API Options" objects when either spawning a client, copying objects, or spawning "children classes" (such as a Table from a Database).
For the details, please check the docstring for astrapy.api_options.APIOptions
and the other classes in that module. Here is a small example script to show a
practical starting point:
from astrapy import DataAPIClient
from astrapy.api_options import (
APIOptions,
SerdesOptions,
)
# Disable custom datatypes in all reads:
no_cdt_options = APIOptions(
serdes_options=SerdesOptions(
custom_datatypes_in_reading=False,
)
)
my_client = DataAPIClient(api_options=no_cdt_options)
# These spawned objects inherit that setting:
my_database = my_client.get_database(
"https://...",
token="my-token-1",
)
my_table = my_database.get_table("my_table")
Date and datetime objects, i.e. instances of the standard library
datetime.datetime
and datetime.date
classes, can be used
anywhere when sending documents and queries to the API.
By default, what you get back is an instance of astrapy.data_types.DataAPITimestamp
(which has a much wider range of expressable timestamps than Python's stdlib).
If you want to revert to using the standard library datetime.datetime
, you can do so
by turn on the APIOptions.SerdesOptions.custom_datatypes_in_reading
API Options setting for the
collection/table object (note that this setting affects the returned format for several other table data types).
If you choose to have timestamps returned as standard-library datetime.datetime
objects,
both for collections and tables, you may supply a specific timezone for these
(the default is UTC). You do so by providing an appropriate datetime.timezone
value
to the APIOptions.SerdesOptions.datetime_tz
API Options setting for the
collection/table object. You can also specify None
for a timezone, in which case
the resulting values will be timezone-unaware (or "naive") datetimes.
Naive datetimes (i.e. those without a timezone information attached)
are inherently ambiguous when it comes to translating them into a unambiguous timestamp.
For this reason, if you want to work with naive datetimes, and in particular you want
AstraPy to accept them for writes, you need to explicitly
turn on the APIOptions.SerdesOptions.accept_naive_datetimes
API Options setting for the
collection/table object, otherwise AstraPy will raise an error.
Remember that what effectively gets written to DB is always a (numeric) timestamp: for naive quantities, this timestamp value depends on the implied timezone used in the conversion, potentially leading to unexpected results e.g. if multiple applications are running with different locale settings.
The following diagram summarizes the behaviour of the write and read paths for datetime objects,
depending on the SerdesOptions
settings:
Here an example code snippet showing how to switch to having reads return regular datetime
objects
and have them set to one's desired timezone offset:
from datetime import timezone,timedelta
from astrapy import DataAPIClient
from astrapy.api_options import APIOptions, SerdesOptions
my_timezone = timezone(timedelta(hours=4, minutes=30))
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
spawn_api_options=APIOptions(
serdes_options=SerdesOptions(
custom_datatypes_in_reading=False,
datetime_tzinfo=my_timezone,
),
),
)
my_collection = my_database.get_collection("my_collection")
# This document will have datetimes set to the desired timezone
document = my_collection.find_one({"code": 123})
Astrapy repackages the ObjectId from bson
and the UUID class and utilities
from the uuid
package and its uuidv6
extension. You can also use them directly.
Even when setting a default ID type for a collection, you still retain the freedom to use any ID type for any document:
from astrapy import DataAPIClient
from astrapy.constants import DefaultIdType
from astrapy.ids import ObjectId, uuid8, UUID
import bson
ASTRA_DB_APPLICATION_TOKEN = "AstraCS:..."
ASTRA_DB_API_ENDPOINT = "https://01234567-....apps.astra.datastax.com"
my_client = DataAPIClient()
my_database = my_client.get_database(
ASTRA_DB_API_ENDPOINT,
token=ASTRA_DB_APPLICATION_TOKEN,
)
my_collection = my_database.create_collection(
"ecommerce",
definition=CollectionDefinition.builder().set_default_id(
DefaultIdType.UUIDV6
).build(),
)
my_collection.insert_one({"_id": ObjectId("65fd9b52d7fabba03349d013")})
my_collection.find({
"_id": UUID("018e65c9-e33d-749b-9386-e848739582f0"),
})
my_collection.update_one(
{"tag": "in_stock"},
{"$set": {"inventory_id": bson.objectid.ObjectId()}},
upsert=True,
)
my_collection.insert_one({"_id": uuid8()})
First install poetry with pip install poetry
and then the project dependencies with poetry install --with dev
.
Linter, style and typecheck should all pass for a PR:
make format
With make format-fix
the style and imports are autofixed (by ruff
)
Features must be thoroughly covered in tests (have a look at tests/*
to infer
naming convention and module structure).
Tests are grouped in:
- "base", covering general-purpose astrapy functionality. Divided in unit/integration;
- "vectorize", extensively running a base workload on all provider/integration choices;
- "admin", doing a whole sweep of admin operations. Very slow on Astra DB.
Astrapy's CI only runs "base". The others are to be checked manually when it's needed.
Tests can be run on three types of Data API targets (with slight differences in what is applicable):
- DockerCompose: DSE+Data API, started by the test initialization with
docker-compose
. Note that in this case you will have to manually destroy the created containers. - nonAstra: a ready-to-use (user-supplied) local Data API (e.g. using
tests/dse_compose
) - Astra: an Astra DB target account (or two, as some tests are specific to dev environment)
Depending on the test, different environment variables are needed: refer to
the templates in tests/env_templates
. The "basic" credentials (one of the three options)
are always required, even for unit testing.
Base:
# choose one:
poetry run pytest tests/base
poetry run pytest tests/base/unit
poetry run pytest tests/base/integration
Admin:
# depending on the environment, different 'admin tests' will run:
poetry run pytest tests/admin
Extended vectorize:
# very many env. variables required for this one:
poetry run pytest tests/vectorize
# restrict to some combination(s) with e.g.:
EMBEDDING_MODEL_TAGS="openai/text-embedding-3-large/HEADER/0,voyageAI/voyage-finance-2/SHARED_SECRET/f" \
poetry run pytest tests/vectorize/integration/test_vectorize_providers.py \
-k test_vectorize_usage_auth_type_header_sync
All the usual pytest
ways of restricting the test selection hold
(e.g. poetry run pytest tests/idiomatic/unit
or [...] -k <test_name_selector>
). Also e.g.:
# suppress log noise
poetry run pytest [...] -o log_cli=0
# increase log level
poetry run pytest [...] -o log_cli=1 --log-cli-level=10
Note: check tests/base/unit/test_imports.py
for more.
Client, data and admin abstractions
from astrapy import (
AstraDBAdmin,
AstraDBDatabaseAdmin,
AsyncCollection,
AsyncDatabase,
AsyncTable,
Collection,
Database,
DataAPIClient,
DataAPIDatabaseAdmin,
Table,
)
Constants for data-related use:
from astrapy.constants import (
DefaultIdType,
Environment,
ReturnDocument,
SortMode,
VectorMetric,
)
ObjectIds and UUIDs:
from astrapy.ids import (
UUID,
ObjectId,
uuid1,
uuid3,
uuid4,
uuid5,
uuid6,
uuid7,
uuid8,
)
API Options:
from astrapy.api_options import (
APIOptions,
DataAPIURLOptions,
DevOpsAPIURLOptions,
SerdesOptions,
TimeoutOptions,
)
Data types:
from astrapy.data_types import (
DataAPITimestamp,
DataAPIVector,
DataAPIDate,
DataAPIDuration,
DataAPIMap,
DataAPISet,
DataAPITime,
)
Info/metadata classes:
from astrapy.info import (
AlterTableAddColumns,
AlterTableAddVectorize,
AlterTableDropColumns,
AlterTableDropVectorize,
CollectionDefaultIDOptions,
CollectionDefinition,
CollectionVectorOptions,
ColumnType,
CreateTableDefinition,
EmbeddingProvider,
EmbeddingProviderAuthentication,
EmbeddingProviderModel,
EmbeddingProviderParameter,
EmbeddingProviderToken,
TableBaseIndexDefinition,
TableIndexDefinition,
TableIndexOptions,
TableKeyValuedColumnType,
TableKeyValuedColumnTypeDescriptor,
TablePrimaryKeyDescriptor,
TableScalarColumnTypeDescriptor,
TableUnsupportedColumnTypeDescriptor,
TableValuedColumnType,
TableValuedColumnTypeDescriptor,
TableVectorColumnTypeDescriptor,
TableVectorIndexDefinition,
TableVectorIndexOptions,
VectorServiceOptions,
)
Authentication:
from astrapy.authentication import (
StaticTokenProvider,
UsernamePasswordTokenProvider,
EmbeddingAPIKeyHeaderProvider,
AWSEmbeddingHeadersProvider,
)
If your code still uses the pre-1.0.0 astrapy (i.e. from astrapy.db import AstraDB, AstraDBCollection
and so on)
you are strongly advised to migrate to the current API. All of the astrapy pre-1.0 API (later dubbed "core")
works throughout astrapy v1, albeit with a deprecation warning on astrapy v. 1.5.
Version 2 drops "core" support entirely. In order to use astrapy version 2.0+, you need to migrate your application. Check the links at the beginning of this README for the updated documentation and API reference.
Check out previous versions of this README for more on "core": 1.5.2 and pre-1.0.