Skip to content

dolong2110/Cifar100-Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cifar100-Classification

My play ground with image classification for Cifar100 dataset with various models

Usage

  • first you need to get the package
$ git clone https://github.com/dolong2110/Cifar100-Classification.git
  • Then make sure you are in right directory
$ cd Cifar100-Classification
  • Install all the requirement packages
$ pip install -r requirements.txt
  • finally train the model
$ python3 train.py --model resnet18 --image_size 32 --augmentation True

Notes here is that:

  • resnet18 is the model's name you can replace its with any available models in my package. For instance resnet152, mobilenet, etc.
  • 32 is the images' size. It is the default image size of the cifar100.
  • True here is whether we should augment data or not.

Models Using

  • self-implement cnn (basic_nn)
  • linear regression (linear_regression)
  • resnet9 (resnet9)
  • resnet18 (resnet18)
  • resnet34 (resnet34)
  • resnet50 (resnet50)
  • resnet101 (resnet101)
  • resnet152 (resnet152)
  • mobilenet (mobilenet)
  • mobilenetv2 (mobilenetv2)

Report

1. Version 1

Model Accuracy
basic_nn
linear_regression
resnet9 0.6188
resnet18 0.6405
resnet34 0.6479
resnet50 0.6133
mobilenet
mobilenetv2 0.4572

2. Version2

add data augmentation

Model Accuracy
basic_nn
linear_regression
resnet9 0.6375
resnet18 0.6739
resnet34 0.6909
resnet50
mobilenet 0.4635
mobilenetv2

3. Version3

add epoch from 10 to 20

Model Accuracy
basic_nn
linear_regression
resnet9
resnet18
resnet34
resnet50
mobilenet
mobilenetv2

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •