Using predicted protein structure data from DeepMind's AlphaFold to explore structural similarities among all 23K+ proteins in the human proteome.
- When referring to proteins in code or in datasets, use the full filename (ex.: AF-Q7Z5P9-F10-model_v1).
- Install miniconda: https://docs.conda.io/projects/conda/en/latest/user-guide/install/macos.html
conda env create -f environment.yml --force
conda activate pss
- [upon changes to
environment.yml
]conda env update -f environment.yml
- Pull in
environment.yml
into directory - In top cell add:
%%bash
MINICONDA_INSTALLER_SCRIPT=Miniconda3-4.5.4-Linux-x86_64.sh
MINICONDA_PREFIX=/usr/local
wget https://repo.continuum.io/miniconda/$MINICONDA_INSTALLER_SCRIPT
chmod +x $MINICONDA_INSTALLER_SCRIPT
./$MINICONDA_INSTALLER_SCRIPT -b -f -p $MINICONDA_PREFIX
conda install --channel conda-forge -f environment.yml
- Download the BLAST+ utilities from the NIH. Make sure you download the right executable based on your architecture (ex.: Linux, Colab or Google Cloud JupyterLab should use the Linux X64 tarball).
- Unpack the archive into blast/.
- Run
chmod 777 -R blast/
to change permissions on the executables such that you can run them. - Add
blast/bin/
to your PATH.
- Download the TM-Align C++ source from Yang Zhang's Research Group at the University of Michigan into tmalign/.
- Run
chmod 777 -R tmalign/
. - Compile the
cpp
file using (from your notebook directory/
):g++ -static -O3 -ffast-math -lm -o tmalign/TMalign tmalign/TMalign.cpp
. - Add
tmalign/
to your PATH.