forked from onnx/onnx
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Microbenchmark for encoding+decoding ModelProto and GraphProto with a…
… single operator (onnx#609) To build: cmake -GNinja -DCMAKE_BUILD_TYPE=Release -DONNX_BUILD_BENCHMARKS=ON -DBUILD_PYTHON=OFF ..
- Loading branch information
1 parent
79dc46f
commit 31ca96c
Showing
4 changed files
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
#include <benchmark/benchmark.h> | ||
|
||
#include <onnx/onnx.pb.h> | ||
|
||
using namespace ONNX_NAMESPACE; | ||
|
||
|
||
inline void createValueInfo4D( | ||
ValueInfoProto& value_info, | ||
const std::string& name, | ||
int64_t n, | ||
int64_t c, | ||
int64_t h, | ||
int64_t w) { | ||
value_info.set_name(name); | ||
|
||
TypeProto_Tensor* tensor_type = | ||
value_info.mutable_type()->mutable_tensor_type(); | ||
tensor_type->set_elem_type(TensorProto_DataType_FLOAT); | ||
|
||
TensorShapeProto* shape = tensor_type->mutable_shape(); | ||
shape->add_dim()->set_dim_value(n); | ||
shape->add_dim()->set_dim_value(c); | ||
shape->add_dim()->set_dim_value(h); | ||
shape->add_dim()->set_dim_value(w); | ||
} | ||
|
||
inline void createValueInfo2D( | ||
ValueInfoProto& value_info, | ||
const std::string& name, | ||
int64_t h, | ||
int64_t w) { | ||
value_info.set_name(name); | ||
|
||
TypeProto* type = value_info.mutable_type(); | ||
|
||
TypeProto_Tensor* tensor_type = type->mutable_tensor_type(); | ||
tensor_type->set_elem_type(TensorProto_DataType_FLOAT); | ||
TensorShapeProto* shape = tensor_type->mutable_shape(); | ||
shape->add_dim()->set_dim_value(h); | ||
shape->add_dim()->set_dim_value(w); | ||
} | ||
|
||
inline void createConv2D( | ||
NodeProto& node, | ||
const std::string& input, | ||
const std::string& weights, | ||
const std::string& bias, | ||
const std::string& output, | ||
uint32_t kernel_size) { | ||
node.set_op_type("Conv"); | ||
node.add_input(input); | ||
node.add_input(weights); | ||
node.add_input(bias); | ||
node.add_output(output); | ||
|
||
{ | ||
AttributeProto* kernel = node.add_attribute(); | ||
kernel->set_name("kernel_shape"); | ||
kernel->set_type(AttributeProto::INTS); | ||
kernel->add_ints(kernel_size); | ||
kernel->add_ints(kernel_size); | ||
} | ||
{ | ||
AttributeProto* dilation = node.add_attribute(); | ||
dilation->set_name("dilations"); | ||
dilation->set_type(AttributeProto::INTS); | ||
dilation->add_ints(1); | ||
dilation->add_ints(1); | ||
} | ||
{ | ||
AttributeProto* stride = node.add_attribute(); | ||
stride->set_name("strides"); | ||
stride->set_type(AttributeProto::INTS); | ||
stride->add_ints(1); | ||
stride->add_ints(1); | ||
} | ||
{ | ||
AttributeProto* group = node.add_attribute(); | ||
group->set_name("group"); | ||
group->set_type(AttributeProto::INTS); | ||
group->set_i(1); | ||
} | ||
{ | ||
AttributeProto* padding = node.add_attribute(); | ||
padding->set_name("pads"); | ||
padding->set_type(AttributeProto::INTS); | ||
/* Use "same" padding */ | ||
padding->add_ints(kernel_size / 2); | ||
padding->add_ints(kernel_size / 2); | ||
padding->add_ints(kernel_size - 1 - kernel_size / 2); | ||
padding->add_ints(kernel_size - 1 - kernel_size / 2); | ||
} | ||
} | ||
|
||
static void ConvGraph(benchmark::State& state) { | ||
while (state.KeepRunning()) { | ||
std::string data; | ||
GraphProto graph; | ||
|
||
createConv2D(*graph.add_node(), "input", "weights", "bias", "output", 3); | ||
|
||
createValueInfo4D(*graph.add_input(), "input", 1, 3, 224, 224); | ||
createValueInfo4D(*graph.add_input(), "weights", 16, 16, 3, 3); | ||
createValueInfo2D(*graph.add_input(), "bias", 1, 16); | ||
createValueInfo4D(*graph.add_output(), "output", 16, 3, 224, 224); | ||
|
||
graph.SerializeToString(&data); | ||
|
||
GraphProto decodedGraph; | ||
decodedGraph.ParseFromString(data); | ||
} | ||
|
||
state.SetItemsProcessed(int64_t(state.iterations())); | ||
} | ||
BENCHMARK(ConvGraph)->Unit(benchmark::kMicrosecond); | ||
|
||
static void ConvModel(benchmark::State& state) { | ||
while (state.KeepRunning()) { | ||
std::string data; | ||
ModelProto model; | ||
model.set_ir_version(IR_VERSION); | ||
OperatorSetIdProto* op_set_id = model.add_opset_import(); | ||
op_set_id->set_domain(""); | ||
op_set_id->set_version(4); | ||
|
||
GraphProto* graph = model.mutable_graph(); | ||
|
||
createConv2D(*graph->add_node(), "input", "weights", "bias", "output", 3); | ||
|
||
createValueInfo4D(*graph->add_input(), "input", 1, 3, 224, 224); | ||
createValueInfo4D(*graph->add_input(), "weights", 16, 16, 3, 3); | ||
createValueInfo2D(*graph->add_input(), "bias", 1, 16); | ||
createValueInfo4D(*graph->add_output(), "output", 16, 3, 224, 224); | ||
|
||
model.SerializeToString(&data); | ||
|
||
ModelProto decodedModel; | ||
decodedModel.ParseFromString(data); | ||
} | ||
|
||
state.SetItemsProcessed(int64_t(state.iterations())); | ||
} | ||
BENCHMARK(ConvModel)->Unit(benchmark::kMicrosecond); | ||
|
||
BENCHMARK_MAIN(); |