-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
149 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
# pyright: reportPrivateUsage=false, reportUnknownMemberType=false | ||
|
||
from __future__ import annotations | ||
|
||
from typing import TYPE_CHECKING | ||
|
||
import pytest | ||
|
||
import tea_tasting.aggr | ||
import tea_tasting.datasets | ||
import tea_tasting.metrics.base | ||
|
||
|
||
if TYPE_CHECKING: | ||
from typing import Any, NamedTuple | ||
|
||
import ibis.expr.types | ||
import pandas as pd | ||
|
||
|
||
|
||
def test_aggr_cols_or(): | ||
aggr_cols0 = tea_tasting.metrics.base.AggrCols( | ||
has_count=False, | ||
mean_cols=("a", "b"), | ||
var_cols=("b", "c"), | ||
cov_cols=(("a", "b"), ("c", "b")), | ||
) | ||
|
||
aggr_cols1 = tea_tasting.metrics.base.AggrCols( | ||
has_count=True, | ||
mean_cols=("b", "c"), | ||
var_cols=("c", "d"), | ||
cov_cols=(("b", "c"), ("d", "c")), | ||
) | ||
|
||
aggr_cols = aggr_cols0 | aggr_cols1 | ||
|
||
assert isinstance(aggr_cols, tea_tasting.metrics.base.AggrCols) | ||
assert aggr_cols.has_count is True | ||
assert set(aggr_cols.mean_cols) == {"a", "b", "c"} | ||
assert len(aggr_cols.mean_cols) == 3 | ||
assert set(aggr_cols.var_cols) == {"b", "c", "d"} | ||
assert len(aggr_cols.var_cols) == 3 | ||
assert set(aggr_cols.cov_cols) == {("a", "b"), ("b", "c"), ("c", "d")} | ||
assert len(aggr_cols.cov_cols) == 3 | ||
|
||
|
||
@pytest.fixture | ||
def data() -> ibis.expr.types.Table: | ||
return tea_tasting.datasets.make_users_data(size=100, seed=42) | ||
|
||
|
||
@pytest.fixture | ||
def correct_aggrs( | ||
data: ibis.expr.types.Table, | ||
) -> dict[Any, tea_tasting.aggr.Aggregates]: | ||
return tea_tasting.aggr.read_aggregates( | ||
data, | ||
group_col="variant", | ||
has_count=True, | ||
mean_cols=("visits", "orders"), | ||
var_cols=("orders", "revenue"), | ||
cov_cols=(("visits", "revenue"),), | ||
) | ||
|
||
|
||
@pytest.fixture | ||
def aggr_metric() -> tea_tasting.metrics.base.MetricBaseAggr: | ||
class AggrMetric(tea_tasting.metrics.base.MetricBaseAggr): | ||
def __init__(self: tea_tasting.metrics.base.MetricBaseAggr) -> None: | ||
return None | ||
|
||
def analyze( | ||
self: tea_tasting.metrics.base.MetricBaseAggr, | ||
data: pd.DataFrame | ibis.expr.types.Table | dict[ # noqa: ARG002 | ||
Any, tea_tasting.aggr.Aggregates], | ||
control: Any, # noqa: ARG002 | ||
treatment: Any, # noqa: ARG002 | ||
variant_col: str | None = None, # noqa: ARG002 | ||
) -> NamedTuple | dict[str, Any]: | ||
return {} | ||
|
||
@property | ||
def aggr_cols( | ||
self: tea_tasting.metrics.base.MetricBaseAggr, | ||
) -> tea_tasting.metrics.base.AggrCols: | ||
return tea_tasting.metrics.base.AggrCols( | ||
has_count=True, | ||
mean_cols=("visits", "orders"), | ||
var_cols=("orders", "revenue"), | ||
cov_cols=(("visits", "revenue"),), | ||
) | ||
|
||
return AggrMetric() | ||
|
||
|
||
def test_metric_base_aggr_read_grouped_aggregates_table( | ||
aggr_metric: tea_tasting.metrics.base.MetricBaseAggr, | ||
data: ibis.expr.types.Table, | ||
correct_aggrs: dict[Any, tea_tasting.aggr.Aggregates], | ||
): | ||
aggrs = aggr_metric.read_grouped_aggregates(data, variant_col="variant") | ||
assert aggrs.keys() == correct_aggrs.keys() | ||
for variant in aggrs: | ||
aggr = aggrs[variant] | ||
correct_aggr = correct_aggrs[variant] | ||
assert aggr._count == correct_aggr._count | ||
assert aggr._mean == correct_aggr._mean | ||
assert aggr._var == correct_aggr._var | ||
assert aggr._cov == correct_aggr._cov | ||
|
||
def test_metric_base_aggr_read_grouped_aggregates_df( | ||
aggr_metric: tea_tasting.metrics.base.MetricBaseAggr, | ||
data: ibis.expr.types.Table, | ||
correct_aggrs: dict[Any, tea_tasting.aggr.Aggregates], | ||
): | ||
aggrs = aggr_metric.read_grouped_aggregates(data.to_pandas(), variant_col="variant") | ||
assert aggrs.keys() == correct_aggrs.keys() | ||
for variant in aggrs: | ||
aggr = aggrs[variant] | ||
correct_aggr = correct_aggrs[variant] | ||
assert aggr._count == correct_aggr._count | ||
assert aggr._mean == correct_aggr._mean | ||
assert aggr._var == correct_aggr._var | ||
assert aggr._cov == correct_aggr._cov | ||
|
||
def test_metric_base_aggr_read_grouped_aggregates_aggrs( | ||
aggr_metric: tea_tasting.metrics.base.MetricBaseAggr, | ||
correct_aggrs: dict[Any, tea_tasting.aggr.Aggregates], | ||
): | ||
aggrs = aggr_metric.read_grouped_aggregates(correct_aggrs) | ||
assert aggrs.keys() == correct_aggrs.keys() | ||
for variant in aggrs: | ||
aggr = aggrs[variant] | ||
correct_aggr = correct_aggrs[variant] | ||
assert aggr._count == correct_aggr._count | ||
assert aggr._mean == correct_aggr._mean | ||
assert aggr._var == correct_aggr._var | ||
assert aggr._cov == correct_aggr._cov | ||
|
||
def test_metric_base_aggr_read_grouped_aggregates_raises( | ||
aggr_metric: tea_tasting.metrics.base.MetricBaseAggr, | ||
data: ibis.expr.types.Table, | ||
): | ||
with pytest.raises(ValueError, match="variant_col"): | ||
aggr_metric.read_grouped_aggregates(data) # type: ignore |