Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow preference to be any Nx computation, default to reduce_min #198

Merged
merged 2 commits into from
Oct 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 31 additions & 28 deletions lib/scholar/cluster/affinity_propagation.ex
Original file line number Diff line number Diff line change
Expand Up @@ -40,14 +40,16 @@ defmodule Scholar.Cluster.AffinityPropagation do
"""
],
preference: [
type: :float,
type: {:or, [:float, :atom]},
default: :reduce_min,
doc: """
Preferences for each point - points with larger values of preferences
are more likely to be chosen as exemplars. The number of clusters is
influenced by this option. If the preferences are not passed as arguments,
they will be set to the median of the input similarities (resulting in a
moderate number of clusters). For a smaller amount of clusters, this can
be set to the minimum value of the similarities.
How to compute the preferences for each point - points with larger values
of preferences are more likely to be chosen as exemplars. The number of clusters is
influenced by this option.

The preferences is either an atom, each is a `Nx` reduction function to
apply on the input similarities (such as `:reduce_min`, `:median`, `:mean`,
etc) or a float.
"""
],
key: [
Expand Down Expand Up @@ -94,21 +96,21 @@ defmodule Scholar.Cluster.AffinityPropagation do
## Examples

iex> key = Nx.Random.key(42)
iex> x = Nx.tensor([[12,5,78,2], [1,-5,7,32], [-1,3,6,1], [1,-2,5,2]])
iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]])
iex> Scholar.Cluster.AffinityPropagation.fit(x, key: key)
%Scholar.Cluster.AffinityPropagation{
labels: Nx.tensor([0, 3, 3, 3]),
cluster_centers_indices: Nx.tensor([0, -1, -1, 3]),
labels: Nx.tensor([0, 0, 2, 2]),
cluster_centers_indices: Nx.tensor([0, -1, 2, -1]),
cluster_centers: Nx.tensor(
[
[12.0, 5.0, 78.0, 2.0],
[:infinity, :infinity, :infinity, :infinity],
[:infinity, :infinity, :infinity, :infinity],
[1.0, -2.0, 5.0, 2.0]
[-1.0, 3.0, 6.0, 1.0],
[:infinity, :infinity, :infinity, :infinity]
]
),
num_clusters: Nx.tensor(2, type: :u64),
iterations: Nx.tensor(18, type: :s64)
iterations: Nx.tensor(22, type: :s64)
}
"""
deftransform fit(data, opts \\ []) do
Expand Down Expand Up @@ -233,14 +235,15 @@ defmodule Scholar.Cluster.AffinityPropagation do
defnp initialize_similarity(data, opts \\ []) do
n = Nx.axis_size(data, 0)
dist = -Scholar.Metrics.Distance.pairwise_squared_euclidean(data)
preference = initialize_preference(dist, opts[:preference])
Nx.put_diagonal(dist, Nx.broadcast(preference, {n}))
end

fill_in =
case opts[:preference] do
nil -> Nx.broadcast(Nx.median(dist), {n})
preference -> Nx.broadcast(preference, {n})
end

Nx.put_diagonal(dist, fill_in)
deftransformp initialize_preference(dist, preference) do
cond do
is_atom(preference) -> apply(Nx, preference, [dist])
is_float(preference) -> preference
end
end

@doc """
Expand All @@ -251,20 +254,20 @@ defmodule Scholar.Cluster.AffinityPropagation do
## Examples

iex> key = Nx.Random.key(42)
iex> x = Nx.tensor([[12,5,78,2], [1,-5,7,32], [-1,3,6,1], [1,-2,5,2]])
iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]])
iex> model = Scholar.Cluster.AffinityPropagation.fit(x, key: key)
iex> Scholar.Cluster.AffinityPropagation.prune(model)
%Scholar.Cluster.AffinityPropagation{
labels: Nx.tensor([0, 1, 1, 1]),
cluster_centers_indices: Nx.tensor([0, 3]),
labels: Nx.tensor([0, 0, 1, 1]),
cluster_centers_indices: Nx.tensor([0, 2]),
cluster_centers: Nx.tensor(
[
[12.0, 5.0, 78.0, 2.0],
[1.0, -2.0, 5.0, 2.0]
[-1.0, 3.0, 6.0, 1.0]
]
),
num_clusters: Nx.tensor(2, type: :u64),
iterations: Nx.tensor(18, type: :s64)
iterations: Nx.tensor(22, type: :s64)
}
"""
def prune(
Expand Down Expand Up @@ -302,13 +305,13 @@ defmodule Scholar.Cluster.AffinityPropagation do
## Examples

iex> key = Nx.Random.key(42)
iex> x = Nx.tensor([[12,5,78,2], [1,5,7,32], [1,3,6,1], [1,2,5,2]])
iex> x = Nx.tensor([[12,5,78,2], [9,3,81,-2], [-1,3,6,1], [1,-2,5,2]])
iex> model = Scholar.Cluster.AffinityPropagation.fit(x, key: key)
iex> model = Scholar.Cluster.AffinityPropagation.prune(model)
iex> Scholar.Cluster.AffinityPropagation.predict(model, Nx.tensor([[1,6,2,6], [8,3,8,2]]))
iex> Scholar.Cluster.AffinityPropagation.predict(model, Nx.tensor([[10,3,50,6], [8,3,8,2]]))
#Nx.Tensor<
s64[2]
[1, 1]
[0, 1]
>
"""
defn predict(%__MODULE__{cluster_centers: cluster_centers} = _model, x) do
Expand Down
6 changes: 3 additions & 3 deletions test/scholar/cluster/affinity_propagation_test.exs
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ defmodule Scholar.Cluster.AffinityPropagationTest do
end

test "fit and compute_values" do
model = AffinityPropagation.fit(x(), key: key())
model = AffinityPropagation.fit(x(), key: key(), preference: :median)

model = AffinityPropagation.prune(model)

Expand All @@ -94,14 +94,14 @@ defmodule Scholar.Cluster.AffinityPropagationTest do
end

test "predict with pruning" do
model = AffinityPropagation.fit(x(), key: key())
model = AffinityPropagation.fit(x(), key: key(), preference: :median)
model = AffinityPropagation.prune(model)
preds = AffinityPropagation.predict(model, x_test())
assert preds == Nx.tensor([0, 2, 0, 5, 5, 5, 2, 2, 5, 2])
end

test "predict without pruning" do
model = AffinityPropagation.fit(x(), key: key())
model = AffinityPropagation.fit(x(), key: key(), preference: :median)
preds = AffinityPropagation.predict(model, x_test())
assert preds == Nx.tensor([2, 9, 2, 34, 34, 34, 9, 9, 34, 9])
end
Expand Down
Loading