Skip to content
/ mocha Public
forked from freeseek/mocha

MOsaic CHromosomal Alterations (MoChA) caller

License

Notifications You must be signed in to change notification settings

eulertx/mocha

 
 

Repository files navigation

A bcftools extension to call mosaic chromosomal alterations starting from phased VCF files with either B Allele Frequency (BAF) and Log R Ratio (LRR) or allelic depth (AD). If you use this tool in your publication, please cite the following paper and preprint:

Loh P., Genovese G., McCarroll S., Price A. et al. Insights about clonal expansions from 8,342 mosaic
chromosomal alterations. Nature 559, 350–355 (2018). [PMID: 29995854] [DOI: 10.1038/s41586-018-0321-x]

Loh P., Genovese G., McCarroll S., Monogenic and polygenic inheritance become
instruments for clonal selection (2019). [DOI: 10.1101/653691]

and this website. For any feedback, send an email to [email protected]

Usage

NOTICE: Starting from May 2020 MoChA regress the BAF against the LRR following previous studies that showed a residual correlation from both Illumina (Staaf et al. 2008) and Affymetrix (Mayrhofer et al. 2016) DNA microarrays. This leads to a slightly increased capability to detect low cell fraction events

NOTICE: Starting from April 2020 MoChA is distributed as a standalone BCFtools plugin. You have to update bcftools mocha to bcftools +mocha in your pipelines

Usage:   bcftools +mocha [OPTIONS] <in.vcf>

Required options:
    -r, --rules <assembly>[?]         predefined genome reference rules, 'list' to print available settings, append '?' for details
    -R, --rules-file <file>           genome reference rules, space/tab-delimited CHROM:FROM-TO,TYPE

General Options:
    -s, --samples [^]<list>           comma separated list of samples to include (or exclude with "^" prefix)
    -S, --samples-file [^]<file>      file of samples to include (or exclude with "^" prefix)
        --force-samples               only warn about unknown subset samples
    -t, --targets [^]<region>         restrict to comma-separated list of regions. Exclude regions with "^" prefix
    -T, --targets-file [^]<file>      restrict to regions listed in a file. Exclude regions with "^" prefix
    -f, --apply-filters <list>        require at least one of the listed FILTER strings (e.g. "PASS,.")
    -v, --variants [^]<file>          tabix-indexed [compressed] VCF/BCF file containing variants
                                      to include (or exclude with "^" prefix) in the analysis
    -p  --cnp <file>                  list of regions to genotype in BED format
        --threads <int>               number of extra output compression threads [0]

Output Options:
    -o, --output <file>               write output to a file [no output]
    -O, --output-type <b|u|z|v>       b: compressed BCF, u: uncompressed BCF, z: compressed VCF, v: uncompressed VCF [v]
        --no-version                  do not append version and command line to the header
    -a  --no-annotations              omit Ldev and Bdev FORMAT from output VCF (requires --output)
        --no-log                      suppress progress report on standard error
    -l  --log <file>                  write log to file [standard error]
    -m, --mosaic-calls <file>         write mosaic chromosomal alterations to a file [standard output]
    -g, --genome-stats <file>         write sample genome-wide statistics to a file [no output]
    -u, --ucsc-bed <file>             write UCSC bed track to a file [no output]

HMM Options:
        --bdev-LRR-BAF <list>         comma separated list of inverse BAF deviations for LRR+BAF model [-2.0,-4.0,-6.0,10.0,6.0,4.0]
        --bdev-BAF-phase <list>       comma separated list of inverse BAF deviations for BAF+phase model
                                      [6.0,8.0,10.0,15.0,20.0,30.0,50.0,80.0,100.0,150.0,200.0]
        --min-dist <int>              minimum base pair distance between consecutive sites for WGS data [400]
        --adjust-BAF-LRR <int>        minimum number of genotypes for a cluster to median adjust BAF and LRR (-1 for no adjustment) [5]
        --regress-BAF-LRR <int>       minimum number of genotypes for a cluster to regress BAF against LRR (-1 for no regression) [15]
        --LRR-GC-order <int>          order of polynomial to regress LRR against local GC content (-1 for no regression) [2]
        --xy-prob <float>             transition probability [1e-09]
        --err-prob <float>            uniform error probability [1e-04]
        --flip-prob <float>           phase flip probability [1e-02]
        --telomere-advantage <float>  telomere advantage [1e-02]
        --centromere-penalty <float>  centromere penalty [1e-04]
        --short-arm-chrs <list>       list of chromosomes with short arms [13,14,15,21,22,chr13,chr14,chr15,chr21,chr22]
        --use-short-arms              use variants in short arms [FALSE]
        --use-centromeres             use variants in centromeres [FALSE]
        --use-no-rules-chrs           use chromosomes without centromere rules [FALSE]
        --LRR-weight <float>          relative contribution from LRR for LRR+BAF model [0.2]
        --LRR-hap2dip <float>         difference between LRR for haploid and diploid [0.45]
        --LRR-cutoff <float>          cutoff between LRR for haploid and diploid [estimated from X nonPAR]

Examples:
    bcftools +mocha -r GRCh37 input.bcf -v ^exclude.bcf -g stats.tsv -m mocha.tsv -p cnp.grch37.bed
    bcftools +mocha -r GRCh38 input.bcf -Ob -o output.bcf -g stats.tsv -m mocha.tsv --LRR-weight 0.5

Installation

Install basic tools (Debian/Ubuntu specific if you have admin privileges):

sudo apt install wget autoconf zlib1g-dev gzip unzip samtools bedtools bcftools

Optionally, you can install these libraries to activate further HTSlib features:

sudo apt install libbz2-dev libssl-dev liblzma-dev libgsl0-dev

Preparation steps

mkdir -p $HOME/bin $HOME/res $HOME/res/kgp && cd /tmp

We recommend compiling the source code but, wherever this is not possible, Linux x86_64 pre-compiled binaries are available for download here. However, notice that you will require a copy of BCFtools 1.10 or newer (available with Ubuntu 20.04)

Download latest version of HTSlib and BCFtools (if not downloaded already)

git clone --branch=develop git://github.com/samtools/htslib.git
git clone --branch=develop git://github.com/samtools/bcftools.git

Download plugins code

/bin/rm -f bcftools/plugins/{{mocha,beta_binom,genome_rules}.h,{mocha,trio-phase,mochatools,importFMT,extendFMT}.c}
wget -P bcftools/plugins https://raw.githubusercontent.com/freeseek/mocha/master/{{mocha,beta_binom,genome_rules}.h,{mocha,trio-phase,mochatools,importFMT,extendFMT}.c}

Compile latest version of HTSlib (optionally disable bz2, gcs, and lzma) and BCFtools (make sure you are using gcc version 5 or newer)

cd htslib && autoheader && (autoconf || autoconf) && ./configure --disable-bz2 --disable-gcs --disable-lzma && make && cd ..
cd bcftools && make && cd ..
/bin/cp bcftools/{bcftools,plugins/{fill-tags,fixploidy,mocha,trio-phase,mochatools,importFMT,extendFMT}.so} $HOME/bin/

Notice that you will need some functionalities missing from the base version of bcftools to run the pipeline

Make sure the directory with the plugins is available to bcftools

export PATH="$HOME/bin:$PATH"
export BCFTOOLS_PLUGINS="$HOME/bin"

Install latest version of Eagle

wget -O $HOME/bin/eagle https://data.broadinstitute.org/alkesgroup/Eagle/downloads/dev/eagle_v2.4.1
chmod a+x $HOME/bin/eagle

Install Minimac3 (optional for array data)

git clone git://github.com/statgen/Minimac3.git
sed -i 's/USER_WARNINGS ?= -Werror/USER_WARNINGS ?= -Wno-format-truncation/' Minimac3/Library/libStatGenForMinimac3/general/Makefile
sed -i 's/bool legacy_count = 0/int legacy_count = 0/' Minimac3/Library/libStatGenForMinimac3/general/Parameters.cpp
sed -i 's/"\([0-9][0-9]*\)"/"\1","chr\1"/g;s/,"X"/,"X","chrX"/;s/finChromosome=="X"/(finChromosome=="X" || finChromosome=="chrX")/;s/finChromosome!="X"/(finChromosome!="X" \&\& finChromosome!="chrX")/' Minimac3/src/HaplotypeSet.cpp
sed -i 's/rHap.finChromosome!="X"/rHap.finChromosome!="X" \&\& rHap.finChromosome!="chrX"/' Minimac3/src/Imputation.cpp
cd Minimac3 && make && cd ..
/bin/cp Minimac3/bin/Minimac3{,-omp} $HOME/bin/

Download resources for GRCh37

Human genome reference

wget -O- ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/human_g1k_v37.fasta.gz | \
  gzip -d > $HOME/res/human_g1k_v37.fasta
samtools faidx $HOME/res/human_g1k_v37.fasta

Genetic map

wget -P $HOME/res https://data.broadinstitute.org/alkesgroup/Eagle/downloads/tables/genetic_map_hg19_withX.txt.gz

1000 Genomes project phase 3

cd $HOME/res/kgp
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chr{{1..22}.phase3_shapeit2_mvncall_integrated_v5a,X.phase3_shapeit2_mvncall_integrated_v1b,Y.phase3_integrated_v2a}.20130502.genotypes.vcf.gz{,.tbi}
for chr in {1..22} X Y; do
  bcftools view --no-version -Ou -c 2 ALL.chr${chr}.phase3*integrated_v[125][ab].20130502.genotypes.vcf.gz | \
  bcftools norm --no-version -Ou -m -any | \
  bcftools norm --no-version -Ob -o ALL.chr${chr}.phase3_integrated.20130502.genotypes.bcf -d none -f $HOME/res/human_g1k_v37.fasta && \
  bcftools index -f ALL.chr${chr}.phase3_integrated.20130502.genotypes.bcf
done

List of common germline duplications and deletions

wget -P $HOME/res ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz{,.tbi}
bcftools query -i 'AC>1 && END-POS+1>10000 && SVTYPE!="INDEL" && (SVTYPE=="CNV" || SVTYPE=="DEL" || SVTYPE=="DUP")' \
  -f "%CHROM\t%POS0\t%END\t%SVTYPE\n" $HOME/res/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.vcf.gz > $HOME/res/cnp.grch37.bed

Minimal divergence intervals from segmental duplications (make sure your bedtools version is not affected by the groupby bug)

wget -O- http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/genomicSuperDups.txt.gz | gzip -d |
  awk '!($2=="chrX" && $8=="chrY" || $2=="chrY" && $8=="chrX") {print $2"\t"$3"\t"$4"\t"$30}' > genomicSuperDups.bed

awk '{print $1,$2; print $1,$3}' genomicSuperDups.bed | \
  sort -k1,1 -k2,2n | uniq | \
  awk 'chrom==$1 {print chrom"\t"pos"\t"$2} {chrom=$1; pos=$2}' | \
  bedtools intersect -a genomicSuperDups.bed -b - | \
  bedtools sort | \
  bedtools groupby -c 4 -o min | \
  awk 'BEGIN {i=0; s[0]="+"; s[1]="-"} {if ($4!=x) i=(i+1)%2; x=$4; print $0"\t0\t"s[i]}' | \
  bedtools merge -s -c 4 -o distinct | \
  sed 's/^chr//' | grep -v gl | bgzip > $HOME/res/dup.grch37.bed.gz && \
  tabix -f -p bed $HOME/res/dup.grch37.bed.gz

1000 Genomes project phase 3 imputation panel for Minimac3 (optional for array data)

cd $HOME/res/kgp
for chr in {1..22} X; do
  if [ $chr == "X" ]; then
    bcftools +fixploidy --no-version ALL.chr$chr.phase3_integrated.20130502.genotypes.bcf -- -f 2 | \
      sed -e 's/\t0\/0/\t0|0/' -e 's/\t1\/1/\t1|1/' > tmp.chr$chr.GRCh37.vcf
  else
    bcftools view --no-version ALL.chr$chr.phase3_integrated.20130502.genotypes.bcf -o tmp.chr$chr.GRCh37.vcf
  fi
  Minimac3-omp \
    --refHaps tmp.chr$chr.GRCh37.vcf \
    --processReference \
    --myChromosome $chr \
    --prefix ALL.chr$chr.phase3_integrated.20130502.genotypes \
    --noPhoneHome
  /bin/rm tmp.chr$chr.GRCh37.vcf
done

Download cytoband file

wget -O $HOME/res/cytoBand.hg19.txt.gz http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz

Setup variables

ref="$HOME/res/human_g1k_v37.fasta"
map="$HOME/res/genetic_map_hg19_withX.txt.gz"
kgp_pfx="$HOME/res/kgp/ALL.chr"
kgp_sfx=".phase3_integrated.20130502.genotypes"
rule="GRCh37"
cnp="$HOME/res/cnp.grch37.bed"
dup="$HOME/res/dup.grch37.bed.gz"
cyto="$HOME/res/cytoBand.hg19.txt.gz"

Download resources for GRCh38

Human genome reference (following the suggestion from Heng Li)

wget -O- ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz | \
  gzip -d > $HOME/res/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna
samtools faidx $HOME/res/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna

Genetic map

wget -P $HOME/res https://data.broadinstitute.org/alkesgroup/Eagle/downloads/tables/genetic_map_hg38_withX.txt.gz

1000 Genomes project phase 3 (fixing contig names, removing duplicate variants, removing incomplete variants)

cd $HOME/res/kgp
wget http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/ALL.chr{{1..22},X,Y}_GRCh38.genotypes.20170504.vcf.gz{,.tbi}
ref="$HOME/res/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna"
for chr in {1..22} X Y; do
  (bcftools view --no-version -h ALL.chr${chr}_GRCh38.genotypes.20170504.vcf.gz | \
    grep -v "^##contig=<ID=[GNh]" | sed 's/^##contig=<ID=MT/##contig=<ID=chrM/;s/^##contig=<ID=\([0-9XY]\)/##contig=<ID=chr\1/'; \
  bcftools annotate --no-version -x INFO/END ALL.chr${chr}_GRCh38.genotypes.20170504.vcf.gz | \
  bcftools view --no-version -H -c 2 | \
  grep -v "[0-9]|\.\|\.|[0-9]" | sed 's/^/chr/') | \
  bcftools norm --no-version -Ou -m -any | \
  bcftools norm --no-version -Ob -o ALL.chr${chr}_GRCh38.genotypes.20170504.bcf -d none -f $ref && \
  bcftools index -f ALL.chr${chr}_GRCh38.genotypes.20170504.bcf
done

Do notice though that the 1000 Genomes project team incorrectly lifted over chromosome X genotypes over PAR1 and PAR2 regions, despite this issue not being reported in the README. This will directly affect the ability to detect chromosome Y loss events

List of common germline duplications and deletions

wget -P $HOME/res ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positions/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.GRCh38.vcf.gz{,.tbi}
bcftools query -i 'AC>1 && END-POS+1>10000 && SVTYPE!="INDEL" && (SVTYPE=="CNV" || SVTYPE=="DEL" || SVTYPE=="DUP")' \
  -f "chr%CHROM\t%POS0\t%END\t%SVTYPE\n" $HOME/res/ALL.wgs.mergedSV.v8.20130502.svs.genotypes.GRCh38.vcf.gz > $HOME/res/cnp.grch38.bed

Minimal divergence intervals from segmental duplications (make sure your bedtools version is not affected by the groupby bug)

wget -O- http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz | gzip -d |
  awk '!($2=="chrX" && $8=="chrY" || $2=="chrY" && $8=="chrX") {print $2"\t"$3"\t"$4"\t"$30}' > genomicSuperDups.bed

awk '{print $1,$2; print $1,$3}' genomicSuperDups.bed | \
  sort -k1,1 -k2,2n | uniq | \
  awk 'chrom==$1 {print chrom"\t"pos"\t"$2} {chrom=$1; pos=$2}' | \
  bedtools intersect -a genomicSuperDups.bed -b - | \
  bedtools sort | \
  bedtools groupby -c 4 -o min | \
  awk 'BEGIN {i=0; s[0]="+"; s[1]="-"} {if ($4!=x) i=(i+1)%2; x=$4; print $0"\t0\t"s[i]}' | \
  bedtools merge -s -c 4 -o distinct | \
  grep -v "GL\|KI" | bgzip > $HOME/res/dup.grch38.bed.gz && \
  tabix -f -p bed $HOME/res/dup.grch38.bed.gz

1000 Genomes project phase 3 imputation panel for Minimac3 (optional for array data)

cd $HOME/res/kgp
for chr in {1..22} X; do
  if [ $chr == "X" ]; then
    bcftools +fixploidy --no-version ALL.chr${chr}_GRCh38.genotypes.20170504.bcf -- -f 2 | \
      sed -e 's/\t0\/0/\t0|0/' -e 's/\t1\/1/\t1|1/' > tmp.chr$chr.GRCh38.vcf
  else
    bcftools view --no-version ALL.chr${chr}_GRCh38.genotypes.20170504.bcf -o tmp.chr$chr.GRCh38.vcf
  fi
  Minimac3-omp \
    --refHaps tmp.chr$chr.GRCh38.vcf \
    --processReference \
    --myChromosome chr$chr \
    --prefix ALL.chr${chr}_GRCh38.genotypes.20170504 \
    --noPhoneHome
  /bin/rm tmp.chr$chr.GRCh38.vcf
done

Download cytoband file

wget -O $HOME/res/cytoBand.hg38.txt.gz http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz

Setup variables

ref="$HOME/res/GCA_000001405.15_GRCh38_no_alt_analysis_set.fna"
map="$HOME/res/genetic_map_hg38_withX.txt.gz"
kgp_pfx="$HOME/res/kgp/ALL.chr"
kgp_sfx="_GRCh38.genotypes.20170504"
rule="GRCh38"
cnp="$HOME/res/cnp.grch38.bed"
dup="$HOME/res/dup.grch38.bed.gz"
cyto="$HOME/res/cytoBand.hg38.txt.gz"

Data preparation

Preparation steps

vcf="..." # input VCF file with phased GT, LRR, and BAF
pfx="..." # output prefix
thr="..." # number of threads to use
sex="..." # file with sex information (first column sample ID, second column sex: 1=male; 2=female)
xcl="..." # VCF file with additional list of variants to exclude (optional)
ped="..." # pedigree file to use if parent child duos are present
dir="..." # directory where output files will be generated
mkdir -p $dir

If you want to process genotype array data you need a VCF file with ALLELE_A, ALLELE_B, GT, BAF, and LRR information:

##fileformat=VCFv4.2
##INFO=<ID=ALLELE_A,Number=1,Type=Integer,Description="A allele">
##INFO=<ID=ALLELE_B,Number=1,Type=Integer,Description="B allele">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=BAF,Number=1,Type=Float,Description="B Allele Frequency">
##FORMAT=<ID=LRR,Number=1,Type=Float,Description="Log R Ratio">
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA12878
1	752566	rs3094315	G	A	.	.	ALLELE_A=1;ALLELE_B=0	GT:BAF:LRR	1|1:0.0111:-0.0798
1	776546	rs12124819	A	G	.	.	ALLELE_A=0;ALLELE_B=1	GT:BAF:LRR	0|1:0.5441:0.4959
1	798959	rs11240777	G	A	.	.	ALLELE_A=1;ALLELE_B=0	GT:BAF:LRR	0|0:0.9712:0.2276
1	932457	rs1891910	G	A	.	.	ALLELE_A=1;ALLELE_B=0	GT:BAF:LRR	1|0:0.5460:-0.1653

Making sure that BAF refers to the allele frequency of the reference allele if ALLELE_B=0 and of the alternate allele if ALLELE_B=1

If you do not already have a VCF file but you have Illumina or Affymetrix genotype array data, you can use the gtc2vcf tools to convert the data to VCF. Alternatively you can use your own scripts

Create a minimal binary VCF

bcftools annotate --no-version -Ob -o $dir/$pfx.unphased.bcf $vcf \
  -x ID,QUAL,^INFO/ALLELE_A,^INFO/ALLELE_B,^FMT/GT,^FMT/BAF,^FMT/LRR && \
  bcftools index -f $dir/$pfx.unphased.bcf

If you want to process whole-genome sequence data you need a VCF file with GT and AD information:

##fileformat=VCFv4.2
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=AD,Number=R,Type=Integer,Description="Allelic depths for the ref and alt alleles in the order listed">
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA12878
1	752566	rs3094315	G	A	.	.	.	GT:AD	1|1:0,31
1	776546	rs12124819	A	G	.	.	.	GT:AD	0|1:21,23
1	798959	rs11240777	G	A	.	.	.	GT:AD	0|0:31,0
1	932457	rs1891910	G	A	.	.	.	GT:AD	1|0:18,14

Make sure that AD is a "Number=R" format field (this was introduced in version 4.2 of the VCF) or multi-allelic variants will not split properly

Create a minimal binary VCF (notice that you will need a version newer than BCFtools 1.10.2 with implemented the --keep-sum option)

bcftools view --no-version -h $vcf | sed 's/^\(##FORMAT=<ID=AD,Number=\)\./\1R/' | \
  bcftools reheader -h /dev/stdin $vcf | \
  bcftools filter --no-version -Ou -e "FMT/DP<10 | FMT/GQ<20" --set-GT . | \
  bcftools annotate --no-version -Ou -x ID,QUAL,INFO,^FMT/GT,^FMT/AD | \
  bcftools norm --no-version -Ou -m -any --keep-sum AD | \
  bcftools norm --no-version -Ob -o $dir/$pfx.unphased.bcf -f $ref && \
  bcftools index $dir/$pfx.unphased.bcf

This will set to missing all genotypes that have low coverage or low genotyping quality, as these can cause issues

Perform basic quality control (the generated list of variants will be excluded from modeling by both eagle and mocha)

n=$(bcftools query -l $dir/$pfx.unphased.bcf|wc -l); \
ns=$((n*98/100)); \
echo '##INFO=<ID=JK,Number=1,Type=Float,Description="Jukes Cantor">' | \
  bcftools annotate --no-version -Ou -a $dup -c CHROM,FROM,TO,JK -h /dev/stdin $dir/$pfx.unphased.bcf | \
  bcftools +fill-tags --no-version -Ou -t ^Y,MT,chrY,chrM -- -t NS,ExcHet | \
  bcftools +mochatools --no-version -Ou -- -x $sex -G | \
  bcftools annotate --no-version -Ob -o $dir/$pfx.xcl.bcf \
    -i 'FILTER!="." && FILTER!="PASS" || JK<.02 || NS<'$ns' || ExcHet<1e-6 || AC_Sex_Test>6' \
    -x FILTER,^INFO/JK,^INFO/NS,^INFO/ExcHet,^INFO/AC_Sex_Test && \
  bcftools index -f $dir/$pfx.xcl.bcf

This command will create a list of variants falling within segmental duplications with low divergence (<2%), high levels of missingness (>2%), variants with excess heterozygosity (p<1e-6), and variants that correlate with sex in an unexpected way (p<1e-6). If you are using WGS data and you don't have a file with sex information, you can skip the quality control line using this information. When later running MoChA, sex will be imputed and a sex file can be computed from MoChA's output

If a file with additional variants to be excluded is available, further merge it with the generated list

/bin/mv $dir/$pfx.xcl.bcf $dir/$pfx.xcl.tmp.bcf && \
/bin/mv $dir/$pfx.xcl.bcf.csi $dir/$pfx.xcl.tmp.bcf.csi && \
bcftools merge --no-version -Ob -o $dir/$pfx.xcl.bcf -m none $dir/$pfx.xcl.tmp.bcf $xcl && \
bcftools index -f $dir/$pfx.xcl.bcf

Phasing pipeline

Phase VCF file by chromosome with Eagle

for chr in {1..22} X; do
  eagle \
    --geneticMapFile $map \
    --outPrefix $dir/$pfx.chr$chr \
    --numThreads $thr \
    --vcfRef $kgp_pfx${chr}$kgp_sfx.bcf \
    --vcfTarget $dir/$pfx.unphased.bcf \
    --vcfOutFormat b \
    --noImpMissing \
    --outputUnphased \
    --vcfExclude $dir/$pfx.xcl.bcf \
    --chrom $chr \
    --pbwtIters 3 && \
  bcftools index -f $dir/$pfx.chr$chr.bcf
done

Notice that you can also use alternative phasing methods that might be more effective, such as using HRC (use the Sanger Imputation Service, as the Michigan Imputations Server does not work with binary VCFs, does not work with VCFs with multiple chromosomes, does not work with chromosome X, and has no option for phasing without imputation). This might provide better phasing and therefore better ability to detect large events at lower cell fractions

Extract chromosomes that do not require phasing

bcftools view --no-version -Ob -o $dir/$pfx.other.bcf $dir/$pfx.unphased.bcf \
  -t ^$(seq -s, 1 22),X,$(seq -f chr%.0f -s, 1 22),chrX && \
bcftools index -f $dir/$pfx.other.bcf

Concatenate eagle output into a single VCF file and add GC/CpG content information

bcftools concat --no-version -Ou --threads $thr $dir/$pfx.{chr{{1..22},X},other}.bcf | \
bcftools +mochatools --no-version -Ob -o $dir/$pfx.bcf -- -f $ref && \
bcftools index -f $dir/$pfx.bcf

If pedigree information with duos or trios is available, you can improve the phased haplotypes from eagle by running the following command instead of the previous one:

bcftools concat --no-version -Ou --threads $thr $dir/$pfx.{chr{{1..22},X},other}.bcf | \
bcftools +mochatools --no-version -Ou -- -f $ref | \
bcftools +trio-phase --no-version -Ob -o $dir/$pfx.bcf --threads $thr -- -p $ped && \
bcftools index -f $dir/$pfx.bcf

(it requires a ped file)

Impute variants using Minimac3 (optional for array data)

for chr in {1..22} X; do
  bcftools annotate --no-version -Ou $dir/$pfx.bcf -a $dir/$pfx.xcl.bcf -m +XCL -r $chr,chr$chr | \
    bcftools view --no-version -Ov -o $dir/$pfx.chr$chr.vcf -e "XCL==1"
  Minimac3-omp \
    --cpus $thr \
    --refHaps $kgp_pfx${chr}$kgp_sfx.m3vcf.gz \
    --format GT,GP \
    --haps $dir/$pfx.chr$chr.vcf \
    --prefix $dir/$pfx.chr$chr \
    --lowMemory \
    --noPhoneHome
  bcftools query -l $dir/$pfx.bcf | \
    bcftools view --no-version -Ob -o $dir/$pfx.chr$chr.dose.bcf -S /dev/stdin $dir/$pfx.chr$chr.dose.vcf.gz
  /bin/rm $dir/$pfx.chr$chr.vcf $dir/$pfx.chr$chr.dose.vcf.gz
done

Concatenate imputed genotypes into a single VCF file (optional for array data)

bcftools concat --no-version -Ob -o $dir/$pfx.dose.bcf --threads $thr $dir/$pfx.chr{{1..22},X}.dose.vcf.gz && \
bcftools index -f $dir/$pfx.dose.bcf

Remove unphased VCF and single chromosome files (optional)

/bin/rm $dir/$pfx.{unphased,chr{{1..22},X},other}.bcf{,.csi} $dir/$pfx.chr{{1..22},X}.dose.bcf

Chromosomal alterations pipeline

Preparation steps

pfx="..." # output prefix
thr="..." # number of extra threads to use
lst="..." # file with list of samples to analyze for asymmetries (e.g. samples with 1p CN-LOH)

Call mosaic chromosomal alterations with MoChA

bcftools +mocha \
  --rules $rule \
  --no-version \
  --output-type b \
  --output $dir/$pfx.mocha.bcf \
  --threads $thr \
  --variants ^$dir/$pfx.xcl.bcf \
  --mosaic-calls $dir/$pfx.mocha.tsv \
  --genome-stats $dir/$pfx.stats.tsv \
  --ucsc-bed $dir/$pfx.ucsc.bed \
  --cnp $cnp \
  $dir/$pfx.bcf && \
bcftools index -f $dir/$pfx.mocha.bcf

The genome statistics file contains information for each sample analyzed in the VCF and it includes the following columns:

               SAMPLE - sample ID
           XXX_MEDIAN - median LRR or sequencing coverage across autosomes
               XXX_SD - standard deviation for LRR or sequencing coverage
             XXX_AUTO - auto correlation across consecutive sites for LRR or sequencing coverage (after GC correction)
         BAF_SD/_CORR - BAF standard deviation or beta-binomial overdispersion for read counts
             BAF_CONC - BAF phase concordance across phased heterozygous sites (see Vattathil et al. 2012)
             BAF_AUTO - phased BAF auto correlation across consecutive phased heterozygous sites
               NSITES - number of sites across the genome for model based on LRR and BAF
                NHETS - number of heterozygous sites across the genome for model based on BAF and genotype phase
       X_NONPAR_NHETS - number of heterozygous sites in the X nonPAR region
X_NONPAR_BAF_SD/_CORR - BAF standard deviation or beta-binomial overdispersion for read counts in the X nonPAR region
  X_NONPAR_XXX_MEDIAN - median LRR or sequencing coverage over the X nonPAR region
  Y_NONPAR_XXX_MEDIAN - median LRR or sequencing coverage over the Y nonPAR region
        MT_XXX_MEDIAN - median LRR or sequencing coverage over the mitochondrial genome
                  SEX - estimated sample sex from X nonPAR region (not heterozygous sites count)
              REL_ESS - LRR or sequencing coverage explained sum of squares fraction using local GC content

The mosaic calls file contains information about each mosaic and germline chromosomal alteration called and it includes the following columns:

       SAMPLE - sample ID
          SEX - inferred sample sex
        CHROM - chromosome
   BEG_XXXXXX - beginning base pair position for the call (according to XXXXXX genome reference)
   END_XXXXXX - end base pair position for the call (according to XXXXXX genome reference)
       LENGTH - base pair length of the call
        P_ARM - whether the call extends to the small arm and whether it reaches the telomere
        Q_ARM - whether the call extends to the long arm and whether it reaches the telomere
       NSITES - number of sites used for the call
        NHETS - number of heterozygous sites used for the call
     N50_HETS - N50 value for consecutive heterozygous sites distances
         BDEV - BAF deviation estimate from 0.5
      BDEV_SE - standard deviation estimate for BAF deviation
      REL_COV - relative coverage estimate from LRR or sequencing coverage
   REL_COV_SE - standard deviation estimate for relative coverage
  LOD_LRR_BAF - LOD score for model based on LRR and BAF
LOD_BAF_PHASE - LOD score for model based on BAF and genotype phase
       NFLIPS - number of phase flips for calls based on BAF and genotype phase model (-1 if LRR and BAF model used)
     BAF_CONC - BAF phase concordance across phased heterozygous sites underlying the call (see Vattathil et al. 2012)
 LOD_BAF_CONC - LOD score for model based on BAF phase concordance (genome-wide corrected)
         TYPE - Type of call based on LRR / relative coverage
           CF - estimated cell fraction based on BDEV and TYPE, or LDEV and TYPE if either BDEV or BDEV_SE are missing

The output VCF will contain the following extra FORMAT fields:

      Ldev - LRR deviation estimate
      Bdev - BAF deviation estimate
Bdev_Phase - for heterozygous calls: 1/-1 if the alternate allele is over/under represented

For array data, MoChA's memory requirements will depend on the number of samples (N) and the number of variants (M) in the largest contig and will amount to 9NM bytes. For example, if you are running 4,000 samples and chromosome 1 has ~80K variants, you will need approximately 2-3GB to run MoChA. For whole genome sequence data, MoChA's memory requirements will depend on the number of samples (N), the --min-dist parameter (D, 400 by default) and the length of the longest contig (L) and will amount to no more than 9NL/D, but could be significantly less, depending on how many variants you have in the VCF. If you are running 1,000 samples with default parameter --min-dist 400 and chromosome 1 is ~250Mbp long, you might need up to 5-6GB to run MoChA. Notice that for whole genome sequence data there is no need to batch too many samples together, as batching will not affect the calls made by MoChA (it will for array data unless you use option --median-BAF-adjust -1)

Notice that, depending on your application, you might want to filter the calls from MoChA. For example, the following code:

awk 'NR==FNR && FNR>1 && $6>.51 {x[$1]++}
  NR>FNR && (FNR==1 || !($1 in x) && $6>1e5 && $17>10 && $21!~"CNP" && $22<.5) {print}' \
  $pfx.stats.tsv $pfx.mocha.tsv > $pfx.mocha.filter.tsv

will generate a new table after removing samples with BAF_CONC greater than 0.51, removing calls smaller than 100kbp, removing calls with less than a LOD score of 10 for the model based on BAF and genotype phase, removing calls flagged as germline copy number polymorphisms (CNPs), and removing calls with an estimated cell fraction larger than 50%

Allelic imbalance pipeline

import results from MoChA into VCF file with imputed genotypes (optional for array data)

bcftools +importFMT \
  --no-version -Ob \
  --formats Ldev,Bdev,Bdev_Phase \
  $dir/$pfx.dose.bcf \
  $dir/$pfx.mocha.bcf \
  -o $dir/$pfx.dose.mocha.bcf && \
bcftools index $dir/$pfx.dose.mocha.bcf

Run asymmetry analyses (subset cohort, run binomial test, discard genotypes)

bcftools +extendFMT \
  --no-version -Ou \
  --format Bdev_Phase \
  --phase \
  --dist 500000 \
  -r $reg \
  -s $lst \
  $dir/$pfx.dose.mocha.bcf | \
bcftools +mochatools \
  --no-version -Ob \
  -o $dir/$pfx.bal.bcf \
  -- -b Bdev_Phase -G && \
bcftools index -f $dir/$pfx.bal.bcf

Observe results for asymmetry analyses in table format

fmt="%CHROM\t%POS\t%ID\t%Bal{0}\t%Bal{1}\t%Bal_Test\n"
bcftools query \
  -i "Bal_Test>6" \
  -f "$fmt" \
  $dir/$pfx.bal.bcf | \
  column -ts $'\t'

Split output VCF file by samples (optional)

bcftools annotate --no-version -Ou -x INFO $dir/$pfx.mocha.bcf | \
  bcftools +split -Ob -o $dir/

Plot results

Install basic tools (Debian/Ubuntu specific if you have admin privileges):

sudo apt install r-cran-optparse r-cran-ggplot2 r-cran-data.table

Download R scripts

/bin/rm -f $HOME/bin/{summary,mocha}_plot.R
wget -P $HOME/bin https://raw.githubusercontent.com/freeseek/mocha/master/{summary,mocha}_plot.R
chmod a+x $HOME/bin/{summary,mocha}_plot.R

Generate summary plot

summary_plot.R \
  --pdf $dir/$pfx.pdf \
  --stats $dir/$pfx.stats.tsv \
  --calls $dir/$pfx.mocha.tsv

Plot mosaic chromosomal alterations (for array data)

mocha_plot.R \
  --mocha \
  --png MH0145622.png \
  --vcf $dir/$pfx.mocha.bcf \
  --samples MH0145622 \
  --regions 11:81098129-115077367 \
  --cytoband $HOME/res/cytoBand.hg19.txt.gz

Notice that by default MoChA will perform internal BAF (for array data) and LRR adjustments that will not be performed by the plotter so the visualized data might actually look noisier than what was actually processed

Mosaic deletion from array data overlapping the ATM gene (GRCh37 coordinates). The deletion signal can be observed across LRR, BAF and phased BAF, although it is the most clear with the latter. Furthermore, evidence of three phase switch errors can be observed in the shifted phased BAF signal

Plot mosaic chromosomal alterations (for WGS data)

mocha_plot.R \
  --wgs \
  --mocha \
  --png CSES15_P26_140611.png \
  --vcf $dir/$pfx.mocha.bcf \
  --samples CSES15_P26_140611 \
  --regions 1:202236354-211793505 \
  --cytoband $HOME/res/cytoBand.hg19.txt.gz

Complex duplication overlapping the MDM4 gene (GRCh37 coordinates). Signal over heterozygous sites colored in blue shows evidence of a triplication event and signal over heterozygous sites colored in red shows evidence of a duplication event. Multiple phase switch errors can be observed in the shifted phased BAF signal

Acknowledgements

This work is supported by NIH grant R01 HG006855 and the Stanley Center for Psychiatric Research and by US Department of Defense Breast Cancer Research Breakthrough Award W81XWH-16-1-0316 (project BC151244). This work would have not been possible without the efforts of Heng Li [email protected], Petr Danecek [email protected], John Marshall [email protected], James Bonfield [email protected], and Shane McCarthy [email protected] in building HTSlib and BCFtools and Po-Ru Loh [email protected] in building the Eagle phasing software

About

MOsaic CHromosomal Alterations (MoChA) caller

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 87.0%
  • R 10.9%
  • Objective-C 2.1%