Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve readability #440

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions dinov2/models/vision_transformer.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ def init_weights(self):
nn.init.normal_(self.register_tokens, std=1e-6)
named_apply(init_weights_vit_timm, self)

def interpolate_pos_encoding(self, x, w, h):
def interpolate_pos_encoding(self, x, h, w):
previous_dtype = x.dtype
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
Expand All @@ -196,28 +196,28 @@ def interpolate_pos_encoding(self, x, w, h):
# Note: still needed for backward-compatibility, the underlying operators are using both output size and scale factors
sx = float(w0 + self.interpolate_offset) / M
sy = float(h0 + self.interpolate_offset) / M
kwargs["scale_factor"] = (sx, sy)
kwargs["scale_factor"] = (sy, sx)
else:
# Simply specify an output size instead of a scale factor
kwargs["size"] = (w0, h0)
kwargs["size"] = (h0, w0)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2),
mode="bicubic",
antialias=self.interpolate_antialias,
**kwargs,
)
assert (w0, h0) == patch_pos_embed.shape[-2:]
assert (h0, w0) == patch_pos_embed.shape[-2:]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)

def prepare_tokens_with_masks(self, x, masks=None):
B, nc, w, h = x.shape
B, nc, h, w = x.shape
x = self.patch_embed(x)
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)

x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.interpolate_pos_encoding(x, w, h)
x = x + self.interpolate_pos_encoding(x, h, w)

if self.register_tokens is not None:
x = torch.cat(
Expand Down