Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
cosmetic changes to the README; add a link to Hardie's description of log ratio
  • Loading branch information
ausgerechnet authored Dec 7, 2021
1 parent 6ec6c7b commit 8062593
Showing 1 changed file with 19 additions and 19 deletions.
38 changes: 19 additions & 19 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -35,16 +35,16 @@ http://www.collocations.de/AM/index.html
The module expects a pandas dataframe with reasonably named columns; i.e. the columns must follow one of the following notations:

- contingency table:
```python3
>>> df
item O11 O12 O21 O22
id
1 appreciated 1 15333 1 176663
2 certain 7 15327 113 176551
3 measuring 1 15333 7 176657
4 particularly 2 15332 45 176619
5 arrived 2 15332 3 176661
```
```python3
>>> df
item O11 O12 O21 O22
id
1 appreciated 1 15333 1 176663
2 certain 7 15327 113 176551
3 measuring 1 15333 7 176657
4 particularly 2 15332 45 176619
5 arrived 2 15332 3 176661
```

- frequency signature (see [Evert 2008: Figure 8](https://www.stephanie-evert.de/PUB/Evert2007HSK_extended_manuscript.pdf)):
```python3
Expand Down Expand Up @@ -129,23 +129,23 @@ You can thus `join` the results directly to the input.
The following association measures are currently implemented (v0.2.0):

- asymptotic hypothesis tests:
- z-score (`z_score`)
- t-score (`t_score`)
- **z-score** (`z_score`)
- **t-score** (`t_score`)
- parameter: `disc`
- log-likelihood (`log_likelihood`)
- **Dunning's log-likelihood** (`log_likelihood`)
- parameter: `signed`
- simple-ll (`simple_ll`)
- **simple-ll** (`simple_ll`)
- parameter: `signed`
- point estimates of association strength:
- log-ratio (`log_ratio`)
- [**log ratio**](http://cass.lancs.ac.uk/log-ratio-an-informal-introduction/) (`log_ratio`)
- parameter: `disc`
- Dice coefficient (`dice`)
- **Dice coefficient** (`dice`)
- information theory:
- mutual information (`mutual_information`)
- **mutual information** (`mutual_information`)
- parameter: `disc`
- local MI (`local_mutual_information`)
- **local-MI** (`local_mutual_information`)
- conservative estimates
- conservative log-ratio (`conservative_log_ratio`)
- **conservative log-ratio** (`conservative_log_ratio`)
- parameters: `disc`, `alpha`, `correct`, `one_sided`

You can either calculate specific measures:
Expand Down

0 comments on commit 8062593

Please sign in to comment.