This is the code for the paper Graph Distillation for Action Detection with Privileged Modalities presented at ECCV 2018
Please note that this is not an officially supported Google product.
In this work, we propose a method termed graph distillation that incorporates rich privileged information from a large-scale multi- modal dataset in the source domain, and improves the learning in the target domain where training data and modalities are scarce.
If you find this code useful in your research then please cite
@inproceedings{luo2018graph,
title={Graph Distillation for Action Detection with Privileged Modalities},
author={Luo, Zelun and Hsieh, Jun-Ting and Jiang, Lu and Niebles, Juan Carlos and Fei-Fei, Li},
booktitle={ECCV},
year={2018}
}
All code was developed and tested on Ubuntu 16.04 with Python 3.6 and PyTorch 0.3.1.
We can download pretrained models used in our paper running the script:
sh scripts/download_models.sh
Or alternatively you can download Cloud SDK
- Install Google Cloud SDK (https://cloud.google.com/sdk/install)
- Copy the pretrained model using the following commands:
gsutil -m cp -r gs://graph_distillation/ckpt .
We can use the scripts in scripts/
to train models on different modalities.
See classification/run.py
for descriptions of the arguments.
scripts/train_ntu_rgbd.sh
trains a model for a single modality.
scripts/train_ntu_rgbd_distillation.sh
trains model with graph distillation. The modality being trained is specified by the xfer_to
argument, and the modalities to distill from is specified in the modalities
argument.
See detection/run.py
for descriptions of the arguments. Note that the visual_encoder_ckpt_path
argument is the pretrained visual encoder checkpoint, which should be from training classification models.
scripts/train_pku_mmd.sh
trains a model for a single modality.
scripts/train_pku_mmd_distillation.sh
trains model with graph distillation. The modality being trained is specified by the xfer_to
argument, and the modalities to distill from is specified in the modalities
argument.