Skip to content

Commit

Permalink
adding project files
Browse files Browse the repository at this point in the history
  • Loading branch information
gouravdhar committed Nov 7, 2018
1 parent 00aed62 commit 408a445
Show file tree
Hide file tree
Showing 6 changed files with 187 additions and 0 deletions.
Binary file added clf_count.pkl
Binary file not shown.
Binary file added count_vect.pkl
Binary file not shown.
25 changes: 25 additions & 0 deletions data5.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
Anything,class
Hii,0
Hey,0
Hello,0
Hii,0
Yo,0
what is your name,1
who are you,1
hey myra,1
wats ur name,1
What's your name,1
what you like to eat,2
wat is ur favourite thing to eat,2
what you eat most,2
What's your favourite food,2
wats ur favourite food,2
what r u doing,3
wats up,3
what's up,3
wassup,3
where you like to visit,4
wat is ur favourite place to visit,4
what you visit most,4
What's your favourite place,4
wats ur favourite site to visit,4
19 changes: 19 additions & 0 deletions myra.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.externals import joblib
count_vect = joblib.load("count_vect.pkl")
clf_count = joblib.load("clf_count.pkl")

from res_map import responses
res = responses()

print 'input your query'
ask = raw_input()
test_example = [ask]
test_example_count = count_vect.transform(test_example)
probs = clf_count.predict_proba(test_example_count)[0]
out = clf_count.predict(test_example_count)[0]
outn = int(out)
print res[outn]

print out
19 changes: 19 additions & 0 deletions res_map.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
res = []
#0
temp = ("Hii \nWassup \nHow may I help you? \n")
res.append(temp)
#1
temp = ("I am Myra")
res.append(temp)
#2
temp = ("Current")
res.append(temp)
#3
temp = ("Chatting with you :) ")
res.append(temp)
#4
temp = ("IIT Roorkee ")
res.append(temp)

def responses():
return res
124 changes: 124 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,124 @@

# coding: utf-8

# In[1]:


import csv
from res_map import responses
res = responses()

data_path = "C:\Users\GAURABH\Desktop\Chat Bot\data5.csv"
data = []
target=[]
i = 0
with open(data_path) as datafile:
filereader = csv.reader(datafile,delimiter =',',quotechar='|')
initial = 0
for row in filereader:
if initial == 0:
initial = 1
continue
else:
data.append(row[0])
target.append(row[1])
data = data[1:]
target = target[1:]


# In[2]:


from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.externals import joblib
#import joblib

count_vect = CountVectorizer()
train_counts = count_vect.fit_transform(data)

clf_count = MultinomialNB(alpha=1,fit_prior='false').fit(train_counts,target)
'''
count_path = "trained_model/naive_count/count_vect.pkl"
clf_path = "trained_model/naive_count/clf_count.pkl"
joblib.dump(count_vect,count_path)
joblib.dump(clf_count,clf_path)
'''
joblib.dump(count_vect,'count_vect.pkl')
joblib.dump(clf_count,'clf_count.pkl')

# In[3]:


#test_example = ["will kissing cause hiv"]
#test_example_count = count_vect.transform(test_example)
'''
def respond(self):
print 'input your query'
ask = raw_input()
vec = self.vector(ask)
no = self.clf.predict(vec)[0]
no = int(no)
return self.res[no]
print 'input your query'
ask = raw_input()
test_example = [ask]
test_example_count = count_vect.transform(test_example)
probs = clf_count.predict_proba(test_example_count)[0]
out = clf_count.predict(test_example_count)[0]
outn = int(out)
print res[outn]
# In[4]:
print out
# In[1]:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
import joblib
count_vect = joblib.load("trained_model/naive_count/count_vect.pkl")
clf_count = joblib.load("trained_model/naive_count/clf_count.pkl")
'''
'''
count_vect = joblib.load("count_vect.pkl")
clf_count = joblib.load("clf_count.pkl")
'''
# In[6]:

'''
test_example = ["will kissing cause hiv"]
test_example_count = count_vect.transform(test_example)
probs = clf_count.predict_proba(test_example_count)[0]
out = clf_count.predict(test_example_count)
# In[9]:
out = out[0]
'''
# In[11]:

'''
from map_englishu import mapping
# In[12]:
mapping[out]
'''
# In[ ]:




0 comments on commit 408a445

Please sign in to comment.