Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update the implementation of ssim() loss function, reduce the computational complexity from O(n) to O(1) since create_window() is called only once in main function #886

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 36 additions & 16 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,9 @@

import os
import torch
import time
from random import randint
from utils.loss_utils import l1_loss, ssim
from utils.loss_utils import l1_loss, ssim, ssim_optimized, create_window
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
Expand All @@ -29,27 +30,28 @@
TENSORBOARD_FOUND = False

def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
start_time=time.time()
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
tb_writer = prepare_output_and_logger(dataset) # Tensorboard writer
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)

bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")

iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)

viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
Expand All @@ -64,9 +66,9 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
except Exception as e:
network_gui.conn = None

iter_start.record()
iter_start.record()

gaussians.update_learning_rate(iteration)
gaussians.update_learning_rate(iteration)

# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
Expand All @@ -83,14 +85,22 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi

bg = torch.rand((3), device="cuda") if opt.random_background else background

render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]

# Loss
# gt_image = viewpoint_cam.original_image.cuda()
# Ll1 = l1_loss(image, gt_image)
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
# loss.backward()


# ----------------modify-------------
gt_image = viewpoint_cam.original_image.cuda()
Ll1 = l1_loss(image, gt_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim_optimized(image, gt_image, window=window))
loss.backward()
#-------------------------------------

iter_end.record()

Expand Down Expand Up @@ -131,13 +141,18 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")

end_time = time.time()
total_time = end_time - start_time
print(f"\nTraining complete. Total training time: {total_time:.2f} seconds.")


def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
args.model_path = os.path.join("/mnt/data1/3dgs_modify_output/", unique_str[0:10])

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Not cleaned.


# Set up output folder
print("Output folder: {}".format(args.model_path))
Expand Down Expand Up @@ -191,6 +206,11 @@ def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_i
torch.cuda.empty_cache()

if __name__ == "__main__":
#----------------------create window------------------
window_size=11
channel=3
window=create_window(window_size, channel)

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Your window is not passed anywhere. It is a local variable in train.py

#--------------------------------
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
Expand Down
14 changes: 12 additions & 2 deletions utils/loss_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,13 +25,14 @@ def gaussian(window_size, sigma):
return gauss / gauss.sum()

def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
"""Create a 2D Gaussian window."""
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window

def ssim(img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
channel = img1.size(-3) #channel=3
window = create_window(window_size, channel)

if img1.is_cuda:
Expand Down Expand Up @@ -62,3 +63,12 @@ def _ssim(img1, img2, window, window_size, channel, size_average=True):
else:
return ssim_map.mean(1).mean(1).mean(1)

#-----------------modify------------------------------------
def ssim_optimized(img1, img2, window=None, window_size=11, size_average=True):
channel = img1.size(-3)
if window is None:
window = create_window(window_size, channel).to(img1.device).type_as(img1)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
Comment on lines +67 to +74

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Your window is always none.