Skip to content

hail-mary/permanent-dropout

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Permanent Dropout: Stochastic Neuron Pruning for Accelerating Deep Reinforcement Learning

Installation

We recommend using Miniconda to create your virtual env.

conda create -n dropout_env python=3.11
conda activate dropout_env
git clone https://github.com/hail-mary/permanent-dropout.git
cd permanent-dropout
pip install gymnasium[mujoco] stable-baselines3 pyyaml

Training

python main.py

# option: specify the log directory by adding `--logdir` flag.
python main.py --logdir logs

Evaluation

python main.py --eval [PATH_TO_CHECKPOINTS]

# option: recording requires ->> pip install "gymnasium[other]"
python main.py --eval [PATH_TO_CHECKPOINTS] --record

Plot results

--plot can also accept multiple json files for comparison.

python main.py --plot .\logs\history.json

References

  • Simultaneous Optimization of Discrete and Continuous Parameters Defining a Robot Controller
  • Averaging Weights Leads to Wider Optima and Better Generalization
  • Improving Stability in Deep Reinforcement Learning with Weight Averaging

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published