We recommend using Miniconda to create your virtual env.
conda create -n dropout_env python=3.11
conda activate dropout_env
git clone https://github.com/hail-mary/permanent-dropout.git
cd permanent-dropout
pip install gymnasium[mujoco] stable-baselines3 pyyaml
python main.py
# option: specify the log directory by adding `--logdir` flag.
python main.py --logdir logs
python main.py --eval [PATH_TO_CHECKPOINTS]
# option: recording requires ->> pip install "gymnasium[other]"
python main.py --eval [PATH_TO_CHECKPOINTS] --record
--plot
can also accept multiple json files for comparison.
python main.py --plot .\logs\history.json
- Simultaneous Optimization of Discrete and Continuous Parameters Defining a Robot Controller
- Averaging Weights Leads to Wider Optima and Better Generalization
- Improving Stability in Deep Reinforcement Learning with Weight Averaging