Read about this research in this presentation
-
Anon 2020. Part of Speech (PoS) Tagging - Tutorialspoint. [online] Available at: https://www.tutorialspoint.com/natural_language_processing/natural_language_processing_part_of_speech_tagging.htm [Accessed 29 Oct. 2020].
-
Duan, B., 2019. Research on Application of Support Vector Machine in Machine Learning. Journal of Electronic Research and Application, [online] 3(4). Available at: http://ojs.bbwpublisher.com/index.php/JERA/article/view/916 [Accessed 29 Oct. 2020].
-
Grefenstette, G. and Tapanainen, P., 1997. What is a word, What is a sentence? Problems of Tokenization.
-
Jurish, B. and Würzner, K.-M., 2013. Word and Sentence Tokenization with Hidden Markov Models. p.23.
-
Kashyap, D. and Josan, G., 2016. Prediction of part of speech tags for punjabi using support vector machines. Int. Arab J. Inf. Technol.
-
Kreuzthaler, M. and Schulz, S., 2015. Detection of sentence boundaries and abbreviations in clinical narratives. BMC Medical Informatics and Decision Making, 15(2), p.S4.
-
Kurniawan, K. and Aji, A.F., 2019. Toward a Standardized and More Accurate Indonesian Part-of-Speech Tagging. arXiv:1809.03391 [cs]. [online] Available at: http://arxiv.org/abs/1809.03391 [Accessed 31 Oct. 2020].
-
Liddy, E.D., 2001. Natural Language Processing. p.15.
-
Mustaqhfiri, M., Abidin, Z. and Kusumawati, R., 2011. PERINGKASAN TEKS OTOMATIS BERITA BERBAHASA INDONESIA MENGGUNAKAN METODE MAXIMUM MARGINAL RELEVANCE. MATICS, [online] 0(0). Available at: http://ejournal.uin-malang.ac.id/index.php/saintek/article/view/1578 [Accessed 30 Oct. 2020].
-
Nguyen, N. and Guo, Y., 2007. Comparisons of sequence labeling algorithms and extensions. In: Proceedings of the 24th international conference on Machine learning, ICML ’07. [online] New York, NY, USA: Association for Computing Machinery.pp.681–688. Available at: https://doi.org/10.1145/1273496.1273582 [Accessed 10 Oct. 2020].
-
Noble, W.S., 2006. What is a support vector machine? Nature Biotechnology, 24(12), pp.1565–1567.
-
Palmer, D.D. and Hearst, M.A., 1994. Adaptive Sentence Boundary Disambiguation. arXiv:cmp-lg/9411022. [online] Available at: http://arxiv.org/abs/cmp-lg/9411022 [Accessed 26 Oct. 2020].
-
Raj, S., Rehman, Z., Rauf, S., Siddique, R. and Anwar, W., 2015. An Artificial Neural Network Approach for Sentence Boundary Disambiguation in Urdu Language Text. 12(4), p.6.
-
Reynar, J.C. and Ratnaparkhi, A., 1997. A Maximum Entropy Approach to Identifying Sentence Boundaries. arXiv:cmp-lg/9704002. [online] Available at: http://arxiv.org/abs/cmp-lg/9704002 [Accessed 10 Oct. 2020].
-
Sanchez, G., 2019. Sentence Boundary Detection in Legal Text. In: Proceedings of the Natural Legal Language Processing Workshop 2019. [online] Minneapolis, Minnesota: Association for Computational Linguistics.pp.31–38. Available at: https://www.aclweb.org/anthology/W19-2204 [Accessed 26 Oct. 2020].
-
Surahio, F.A. and Mahar, J.A., 2018. Prediction system for Sindhi parts of speech tags by using support vector machine. In: 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). pp.1–6.
-
Vogl, T.M., Seidelin, C., Ganesh, B. and Bright, J., 2020. Smart Technology and the Emergence of Algorithmic Bureaucracy: Artificial Intelligence in UK Local Authorities. Public Administration Review, 80(6), pp.946–961.
-
Wen, Z., Li, B., Kotagiri, R., Chen, J., Chen, Y. and Zhang, R., 2017. Improving Efficiency of SVM k-fold Cross-validation by Alpha Seeding. arXiv:1611.07659 [cs]. [online] Available at: http://arxiv.org/abs/1611.07659 [Accessed 30 Oct. 2020].
-
Wong, D.F., Chao, L.S. and Zeng, X., 2014. iSentenizer- : Multilingual Sentence Boundary Detection Model. [Research Article] The Scientific World Journal. Available at: https://www.hindawi.com/journals/tswj/2014/196574/ [Accessed 10 Oct. 2020].
-
Yousif, J.H. and Al-Risi, M.H., 2019. PART OF SPEECH TAGGER FOR ARABIC TEXT BASED SUPPORT VECTOR MACHINES: A REVIEW. ICTACT JOURNAL ON SOFT COMPUTING, 09(02), p.7.