This repository contains solution of Load Flow analysis using Iterative method(Newton Raphson Method).
Below is the format of data required in input-:
General Data:
No of buses (variable name ‘nbs’): 6;
No of machines (variable name ‘nmc’): 2
Bus data (variable name ‘bus_dat’):
Bus no. | Bus type | Voltage(p.u.) | Angle(deg) | P generated | Q generated | P Load | Q Load |
---|---|---|---|---|---|---|---|
1 | 101 | 1.00 | 0 | 0 | 0 | 0.55 | 0.13 |
2 | 101 | 1.00 | 0 | 0 | 0 | 0 | 0 |
3 | 101 | 1.00 | 0 | 0 | 0 | 0.30 | 0.18 |
4 | 101 | 1.00 | 0 | 0 | 0 | 0.50 | 0.05 |
5 | 102 | 1.03 | 0 | 0.75 | 0 | 0.30 | 0.10 |
6 | 103 | 1.02 | 0 | 0 | 0 | 0 | 0 |
101:P-Q Bus; 102:P-|V| Bus; \t 103:|V|-theta (or slack) Bus
From Bus | TO Bus | Resistance r(p.u) | Reactance x(p.u.) | Line Charging B (p.u.) | Tap ratio |
---|---|---|---|---|---|
6 | 2 | 0.080 | 0.370 | 0.280 | 1.000 |
6 | 4 | 0.123 | 0.518 | 0.400 | 1.000 |
5 | 1 | 0.723 | 1.050 | 0.200 | 1.000 |
5 | 3 | 0.282 | 0.640 | 0.300 | 1.000 |
2 | 4 | 0.097 | 0.407 | 0.240 | 1.000 |
2 | 1 | 0.0 | 0.133 | 0.000 | 1.050 |
4 | 3 | 0.0 | 0.300 | 0.000 | 1.025 |
Step wise code -:
- First the Ybus is computed using Branch data
- Iterative Newton raphson method is used to find the solution of V and Thetha
- Then reactive power and active power injection is calculated at all nodes
- Reactive power generation at the P-V bus
- Sending and recieving power at each node is calculated