Skip to content

hmandal/cudnn.torch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

97 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cudnn.torch

Torch7 FFI bindings for NVidia CuDNN (R3) kernels!

Modules are API compatible their nn equivalents. Fully unit-tested against nn implementations.

Installation

Modules

-- All inputs have to be 3D or 4D(batch-mode), except ReLU, Tanh and Sigmoid
cudnn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW = 1], [dH = 1], [padW = 0], [padH = 0], [groups = 1])
cudnn.SpatialMaxPooling(kW, kH, dW, dH, padW, padH)
cudnn.SpatialAveragePooling(kW, kH, dW, dH, padW, padH)

-- the pointwise functions take an additional optional argument. if inplace=true then they do operations in-place without using any extra memory for themselves
cudnn.ReLU(inplace[=false])
cudnn.Tanh(inplace[=false])
cudnn.Sigmoid(inplace[=false])

-- SoftMax can be run in fast mode or accurate mode. Default is accurate mode.
cudnn.SoftMax(fastMode [= false])          -- SoftMax across each image (just like nn.SoftMax)
cudnn.SpatialSoftMax(fastMode [= false])   -- SoftMax across feature-maps (per spatial location)

-- Volumetric inputs (4D or 5D batched mode)
cudnn.VolumetricConvolution(nInputPlane, nOutputPlane, kT, kW, kH, dT, dW, dH, padT, padW, padH)
cudnn.VolumetricMaxPooling(kT, kW, kH, dT, dW, dH, padT, padW, padH)
cudnn.VolumetricAveragePooling(kT, kW, kH, dT, dW, dH, padT, padW, padH)

I have no time to support these, so please don't expect a quick response to filed github issues.

For version CuDNN R1, checkout the branch R1 For version CuDNN R2, checkout the branch R2

About

Torch-7 FFI bindings for NVIDIA CuDNN

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Lua 99.6%
  • CMake 0.4%