- Finished
2023, Ecuador: demographic analyst
│
├── data
│ ├── processed_csv # processed .csv files
│ └── raw_csv # raw .csv files
│ │
│ ├── ml_best_models # best ml models
| | └── best_model.pkl
│ │
│ ├── images # images used on different stage and files
| | └── approximate_location_of_population_age_60_plus.png
| | └── census_by_age_2010__2022.png
| | └── census_percentage_by_age_2010__2022.png
| |
│ |__ genered_maps # interactive maps
| └── heatmap_grouped_marker_density_clusters_map.html
|
├── notebooks
| |
│ ├── packages # commons function from multiple notebooks
| | └── common_functions.py
| |
│ |-- 1_etl.ipynb
| |__ 2_eda_enrichment_pre_prosesing.ipynb
| |__ 3_data_viz.ipynb
| |__ 4_auto_sklearn.ipynb
|
├── .gitattributes
|
├── .gitignore
│
├── requirements.txt
|
│-- technical_report.md
|
│-- technical_report.pdf
|
│-- LICENSE.md
|
└── README.md
-
Interest Insights on Ecuador, Segmented by Pichincha, Quito, and Sub-segmented by Current Population (2023) Age 50 Plus
- Population by Educational Level
- Population Distribution by Age and Educational Level
- Population by Area
- Population by Natural Region
- Population by Education Level and Sex
- Education Trends Between 2013 and 2014
- Population Age 60 Plus by approximately geographic Location
- Programing language:
- Python
-
Libraries from data analysis:
- numpy
- pandas
- missingno
-
Libraries from data visualization:
- matplotlib
- seaborn
- folium
-
Libraries from machine learning:
- scikit-learn
- joblib
-
- Python
pip3 install -r requirements.txt
- Data Scientist and project manager: Yane, Ian Cristian
- Target company: CORPORACIÓN GESTIÓN SOSTENIBLE
- Director of target company: Mantilla, Jhon