-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Vioreanu-Rokhlin quadrature finding
- Loading branch information
Showing
3 changed files
with
452 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
""" | ||
.. autofunction:: adapt_2d_integrands_to_complex_arg | ||
.. autofunction:: orthogonalize_basis | ||
.. autofunction:: guess_nodes_vr | ||
.. autofunction:: find_weights_undetermined_coefficients | ||
.. autoclass:: QuadratureResidualJacobian | ||
.. autofunction:: quad_residual_and_jacobian | ||
""" | ||
|
||
from __future__ import annotations | ||
|
||
|
||
__copyright__ = """ | ||
Copyright (C) 2024 University of Illinois Board of Trustees | ||
""" | ||
|
||
__license__ = """ | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in | ||
all copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | ||
THE SOFTWARE. | ||
""" | ||
|
||
import operator | ||
from collections.abc import Callable, Sequence | ||
from dataclasses import dataclass | ||
from functools import reduce | ||
from typing import TypeAlias | ||
|
||
import numpy as np | ||
import numpy.linalg as la | ||
|
||
|
||
# FIXME: Better name? | ||
Integrand: TypeAlias = Callable[[np.ndarray], np.ndarray] | ||
|
||
|
||
@dataclass(frozen=True) | ||
class _ProductIntegrand: | ||
functions: Sequence[Integrand] | ||
|
||
def __call__(self, points: np.ndarray) -> np.ndarray: | ||
return reduce(operator.mul, (f(points) for f in self.functions)) | ||
|
||
|
||
@dataclass(frozen=True) | ||
class _ConjugateIntegrand: | ||
function: Integrand | ||
|
||
def __call__(self, points: np.ndarray) -> np.ndarray: | ||
return self.function(points).conj() | ||
|
||
|
||
def _identity_integrand(points: np.ndarray) -> np.ndarray: | ||
return points | ||
|
||
|
||
@dataclass(frozen=True) | ||
class _LinearCombinationIntegrand: | ||
coefficients: np.ndarray | ||
functions: Sequence[Integrand] | ||
|
||
def __post_init__(self): | ||
assert len(self.coefficients) == len(self.functions) | ||
|
||
def __call__(self, points: np.ndarray) -> np.ndarray: | ||
return sum( | ||
(coeff * func(points) | ||
for coeff, func in zip(self.coefficients, self.functions, strict=True)), | ||
np.zeros(())) | ||
|
||
|
||
def linearly_combine( | ||
coefficients: np.ndarray, | ||
functions: Sequence[Integrand] | ||
) -> Integrand: | ||
""" | ||
Takes advantage of associativity when linearly combining linear combinations. | ||
""" | ||
|
||
lcfunctions = [ | ||
f for f in functions | ||
if isinstance(f, _LinearCombinationIntegrand) | ||
] | ||
if len(lcfunctions) != len(functions): | ||
return _LinearCombinationIntegrand(coefficients, functions) | ||
|
||
basis: list[Integrand] = [] | ||
n = len(lcfunctions) | ||
matrix = np.zeros((n, n), dtype=np.complex128) | ||
for i, f in enumerate(lcfunctions): | ||
ncommon = min(len(basis), len(f.functions)) | ||
assert basis[:ncommon] == f.functions[:ncommon] | ||
basis.extend(f.functions[ncommon:]) | ||
|
||
ncoeff = len(f.coefficients) | ||
matrix[i, :ncoeff] = f.coefficients | ||
|
||
return _LinearCombinationIntegrand(coefficients @ matrix, basis) | ||
|
||
|
||
@dataclass(frozen=True) | ||
class _ComplexToNDAdapter: | ||
function: Integrand | ||
|
||
def __call__(self, points: np.ndarray) -> np.ndarray: | ||
rpoints = np.array([points.real, points.imag]) | ||
return self.function(rpoints) | ||
|
||
|
||
def adapt_2d_integrands_to_complex_arg( | ||
functions: Sequence[Integrand] | ||
) -> Sequence[Integrand]: | ||
return [_ComplexToNDAdapter(f) for f in functions] | ||
|
||
|
||
def _mass_matrix( | ||
integrate: Callable[[Integrand], np.inexact], | ||
basis: Sequence[Integrand], | ||
) -> np.ndarray: | ||
n = len(basis) | ||
mass_mat = np.zeros((n, n), dtype=np.complex128) | ||
for i in range(n): | ||
for j in range(i+1): | ||
mass_mat[i, j] = integrate( | ||
_ProductIntegrand((basis[i], _ConjugateIntegrand(basis[j])))) | ||
return mass_mat | ||
|
||
|
||
def orthogonalize_basis( | ||
integrate: Callable[[Integrand], np.inexact], | ||
basis: Sequence[Integrand], | ||
) -> Sequence[Integrand]: | ||
r""" | ||
Let :math:`\Omega\subset\mathbb C` be a convex domain. | ||
:arg integrate: Computes an integral of the passed integrand over | ||
:math:`\Omega` | ||
""" | ||
n = len(basis) | ||
mass_mat = _mass_matrix(integrate, basis) | ||
|
||
l_factor = la.cholesky(mass_mat) | ||
|
||
from scipy.linalg import solve_triangular | ||
l_inv = solve_triangular(l_factor, np.eye(n), lower=True) | ||
|
||
assert la.norm(np.triu(l_inv, 1), "fro") < 1e-14 | ||
|
||
return [ | ||
linearly_combine(l_inv[i, :i+1], basis[:i+1]) | ||
for i in range(n) | ||
] | ||
|
||
|
||
def guess_nodes_vr( | ||
integrate: Callable[[Integrand], np.inexact], | ||
onb: Sequence[Integrand], | ||
) -> np.ndarray: | ||
""" | ||
Finds interpolation nodes based on the multiplication-operator technique in | ||
[Vioreanu2011]_. | ||
:arg integrate: must accurately integrate a product of two functions from *onb* and | ||
a degree-1 monomial. | ||
:arg onb: An orthonormal basis of functions | ||
:returns: an array of shape ``(2, len(onb))`` containing nodes | ||
""" | ||
n = len(onb) | ||
mat = np.empty((n, n), dtype=np.complex128) | ||
for i in range(n): | ||
for j in range(n): | ||
mat[i, j] = integrate( | ||
_ProductIntegrand(( | ||
_identity_integrand, | ||
onb[i], | ||
_ConjugateIntegrand(onb[j])))) | ||
|
||
nodes_complex = la.eigvals(mat) | ||
return np.array([nodes_complex.real, nodes_complex.imag]) | ||
|
||
|
||
def find_weights_undetermined_coefficients( | ||
integrands: Sequence[Integrand], | ||
nodes: np.ndarray, | ||
reference_integrals: np.ndarray, | ||
) -> np.ndarray: | ||
""" | ||
:arg nodes: shaped ``(ndim, nnodes)``, real-valued | ||
:arg reference_integrals: shaped ``(len(integrands),)`` | ||
.. note:: | ||
Tolerates overdetermined systems, will provide least squares solution. | ||
""" | ||
|
||
if len(reference_integrals) != len(integrands): | ||
raise ValueError( | ||
"number of integrands must match number of reference integrals") | ||
if len(reference_integrals) < len(nodes): | ||
from warnings import warn | ||
warn("Underdetermined quadrature system", stacklevel=2) | ||
|
||
from modepy import vandermonde | ||
return la.lstsq(vandermonde(integrands, nodes).T, reference_integrals)[0] | ||
|
||
|
||
@dataclass(frozen=True) | ||
class QuadratureResidualJacobian: | ||
""" | ||
.. autoattribute:: residual | ||
.. autoattribute:: dresid_dweights | ||
""" | ||
|
||
residual: np.ndarray | ||
dresid_dweights: np.ndarray | ||
|
||
|
||
def quad_residual_and_jacobian( | ||
nodes: np.ndarray, | ||
weights: np.ndarray, | ||
integrands: Sequence[Integrand], | ||
integrand_derivatives: Sequence[Integrand], | ||
reference_integrals: np.ndarray, | ||
) -> QuadratureResidualJacobian: | ||
""" | ||
:arg nodes: shaped ``(ndim, nnodes)``, real-valued | ||
:arg weights: shaped ``(nnodes,)``, real-valued | ||
:arg reference_integrals: shaped ``(len(integrands),)`` | ||
""" | ||
nintegrands = len(integrands) | ||
_ndim, nnodes = nodes.shape | ||
|
||
from modepy import vandermonde | ||
|
||
vdm_t = vandermonde(integrands, nodes).T | ||
residual = vdm_t @ weights - reference_integrals | ||
|
||
dresid_dweights = np.empty((nintegrands, nnodes)) | ||
for inode in range(nnodes): | ||
w_with_one = weights.copy() | ||
w_with_one[inode] = 1 | ||
dresid_dweights = vdm_t @ w_with_one | ||
|
||
return QuadratureResidualJacobian( | ||
residual=residual, | ||
dresid_dweights=dresid_dweights, | ||
) |
Oops, something went wrong.