-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
""" | ||
Tensor Product Quadrature vs. Vioreanu-Rokhlin Quadrature for Plane Wave on Sphere | ||
================================================================================== | ||
This test compares the absolute error of **Tensor Product Quadrature** and | ||
**Vioreanu-Rokhlin Quadrature** against the number of discretization nodes | ||
with matched total polynomial degree exactness. | ||
Comparison of Polynomial Exactness | ||
---------------------------------- | ||
The following table summarizes the total degree of polynomial exactness of both quadrature methods | ||
based on the order: | ||
Order VR Exact_to Tensor Exact_to | ||
----------------------------------------- | ||
1 2 3 | ||
2 4 5 | ||
3 5 7 | ||
4 7 9 | ||
5 8 11 | ||
6 10 13 | ||
7 12 15 | ||
8 14 17 | ||
9 15 19 | ||
10 17 21 | ||
11 19 23 | ||
12 20 25 | ||
13 22 27 | ||
14 24 29 | ||
15 25 31 | ||
16 27 33 | ||
17 28 35 | ||
18 30 37 | ||
19 32 39 | ||
Wave Function and Sphere Integral | ||
--------------------------------- | ||
The normal direction is: | ||
d = [-5, 4, 1], n = d / <d, d> | ||
The plane wave is defined as: | ||
f(x) = exp(1j * n · x) | ||
We compute the integral of the plane wave over a sphere of radius 1: | ||
∫_sphere f dS ≈ 10.57423625632583807548 | ||
This value is obtained using Mathematica with a working precision of 21 digits. | ||
Mathematica Code | ||
---------------- | ||
Below is the Mathematica code used to define the wave function and compute the integral numerically: | ||
n = Normalize[{-5, 4, 1}]; | ||
r = 1; | ||
wave[θ_, φ_] := | ||
Exp[I r (n[[1]] Sin[θ] Cos[φ] + | ||
n[[2]] Sin[θ] Sin[φ] + | ||
n[[3]] Cos[θ])]; | ||
NIntegrate[ | ||
wave[θ, φ] * r^2 Sin[θ], | ||
{θ, 0, Pi}, | ||
{φ, 0, 2 Pi}, | ||
WorkingPrecision -> 21 | ||
] | ||
""" | ||
|
||
import meshmode.mesh.generation as mgen | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from meshmode.discretization import Discretization | ||
from meshmode.discretization.poly_element import InterpolatoryQuadratureSimplexGroupFactory | ||
from pytential.qbx import QBXLayerPotentialSource | ||
from pytential import GeometryCollection, bind, sym | ||
from arraycontext import flatten | ||
from meshmode.array_context import PyOpenCLArrayContext | ||
import pyopencl as cl | ||
|
||
cl_ctx = cl.create_some_context() | ||
queue = cl.CommandQueue(cl_ctx) | ||
actx = PyOpenCLArrayContext(queue, force_device_scalars=True) | ||
|
||
def quadrature(level, target_order, qbx_order, tensor=False): | ||
if tensor: | ||
from meshmode.mesh import TensorProductElementGroup | ||
mesh = mgen.generate_sphere(1, target_order, uniform_refinement_rounds=level, group_cls=TensorProductElementGroup) | ||
from meshmode.discretization.poly_element import InterpolatoryQuadratureGroupFactory | ||
pre_density_discr = Discretization(actx, mesh, InterpolatoryQuadratureGroupFactory(target_order)) | ||
else: | ||
mesh = mgen.generate_sphere(1, target_order, uniform_refinement_rounds=level) | ||
pre_density_discr = Discretization(actx, mesh, InterpolatoryQuadratureSimplexGroupFactory(target_order)) | ||
|
||
qbx = QBXLayerPotentialSource(pre_density_discr, target_order, qbx_order, fmm_order=False) | ||
dis_stage = sym.QBX_SOURCE_STAGE1 | ||
places = GeometryCollection({"qbx": qbx}, auto_where=('qbx')) | ||
density_discr = places.get_discretization("qbx", dis_stage) | ||
ambient_dim = qbx.ambient_dim | ||
dofdesc = sym.DOFDescriptor("qbx", dis_stage) | ||
|
||
sources = density_discr.nodes() | ||
weights_nodes = bind(places, sym.weights_and_area_elements(ambient_dim=3, dim=2, dofdesc=dofdesc))(actx) | ||
|
||
sources_h = actx.to_numpy(flatten(sources, actx)).reshape(ambient_dim, -1) | ||
weights_nodes_h = actx.to_numpy(flatten(weights_nodes, actx)) | ||
|
||
return sources_h, weights_nodes_h | ||
|
||
def wave(x): | ||
n = np.array([-5, 4, 1]) | ||
n = n / np.linalg.norm(n) | ||
return np.exp(1j * np.dot(n, x)) | ||
|
||
def run_test(vr_target_orders, tensor_target_orders, refine_levels): | ||
ref = 10.57423625632583807548 | ||
|
||
for vr_target_order, tensor_target_order in zip(vr_target_orders, tensor_target_orders): | ||
print(f"{'VR Order'}: {vr_target_order}, Tensor Order: {tensor_target_order}") | ||
print(f"{'VR Nodes':<15}{'Tensor Nodes':<15}{'VR Error':<20}{'Tensor Error':<20}") | ||
print("-" * 70) | ||
vr_result = [] | ||
tensor_result = [] | ||
vr_nodes = [] | ||
tensor_nodes = [] | ||
vr_err = [] | ||
tensor_err = [] | ||
|
||
for level in refine_levels: | ||
# VR quadrature | ||
qbx_order = vr_target_order | ||
sources_h, weights_nodes_h = quadrature(level, vr_target_order, qbx_order=qbx_order) | ||
vr_value = np.dot(wave(sources_h), weights_nodes_h) | ||
vr_result.append(vr_value) | ||
vr_nodes.append(len(sources_h[0])) | ||
vr_err.append(np.abs(vr_value - ref)) | ||
|
||
# Tensor quadrature | ||
qbx_order = tensor_target_order | ||
sources_h, weights_nodes_h = quadrature(level, tensor_target_order, qbx_order=qbx_order, tensor=True) | ||
tensor_value = np.dot(wave(sources_h), weights_nodes_h) | ||
tensor_result.append(tensor_value) | ||
tensor_nodes.append(len(sources_h[0])) | ||
tensor_err.append(np.abs(tensor_value - ref)) | ||
|
||
print(f"{vr_nodes[-1]:<15}{tensor_nodes[-1]:<15}" | ||
f"{vr_err[-1]:<20.12e}{tensor_err[-1]:<20.12e}") | ||
|
||
if tensor_err[-1] <= 1e-13 or vr_err[-1] <= 1e-13: | ||
break | ||
|
||
print("\n") | ||
|
||
plt.figure() | ||
plt.semilogy(vr_nodes, vr_err, "o-", label=f"Vioreanu-Rokhlin (Order {vr_target_order})") | ||
plt.semilogy(tensor_nodes, tensor_err, "o-", label=f"Tensor (Order {tensor_target_order})") | ||
plt.xlabel(r"$\# \mathrm{nodes}$") | ||
plt.ylabel(r"$\log_{10}(|\mathrm{abs\ err}|)$") | ||
plt.legend() | ||
plt.grid(True) | ||
plt.title( | ||
rf"$\log_{{10}}(|\mathrm{{abs\ err}}|) \ \mathrm{{vs}} \ \# \mathrm{{nodes}}$" "\n" | ||
rf"$\mathrm{{VR\ order}} = {vr_target_order}, \mathrm{{Tensor\ order}} = {tensor_target_order}$" | ||
) | ||
plt.show() | ||
|
||
if __name__ == "__main__": | ||
refine_levels = [0, 1, 2, 3, 4, 5, 6] | ||
vr_target_orders = [4, 9, 16] | ||
tensor_target_orders = [3, 7, 13] | ||
run_test(vr_target_orders, tensor_target_orders, refine_levels) |