Skip to content
This repository has been archived by the owner on Sep 13, 2023. It is now read-only.

Support IsolationForest #693

Merged
merged 2 commits into from
Jul 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ repos:
- types-requests
- types-six
- types-PyYAML
- pydantic
- pydantic>=1.9.0,<2
- types-filelock
- types-emoji
- repo: local
Expand Down
4 changes: 2 additions & 2 deletions mlem/contrib/sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from typing import Any, ClassVar, Dict, List, Optional, Union

import sklearn
from sklearn.base import ClassifierMixin, RegressorMixin
from sklearn.base import ClassifierMixin, OutlierMixin, RegressorMixin
from sklearn.feature_extraction.text import TransformerMixin, _VectorizerMixin
from sklearn.pipeline import Pipeline
from sklearn.preprocessing._encoders import _BaseEncoder
Expand All @@ -28,7 +28,7 @@ class SklearnModel(ModelType, ModelHook, IsInstanceHookMixin):
"""ModelType implementation for `scikit-learn` models"""

type: ClassVar[str] = "sklearn"
valid_types: ClassVar = (RegressorMixin, ClassifierMixin)
valid_types: ClassVar = (RegressorMixin, ClassifierMixin, OutlierMixin)

io: ModelIO = SimplePickleIO()
"""IO"""
Expand Down
21 changes: 19 additions & 2 deletions tests/contrib/test_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
import lightgbm as lgb
import numpy as np
import pytest
from sklearn.ensemble import IsolationForest
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.pipeline import Pipeline
Expand Down Expand Up @@ -54,6 +55,13 @@ def regressor(inp_data, out_data):
return lr


@pytest.fixture
def outlier(inp_data):
model = IsolationForest()
model.fit(inp_data)
return model


@pytest.fixture
def count_vectorizer(text_inp_data):
vectorizer = CountVectorizer()
Expand Down Expand Up @@ -195,7 +203,9 @@ def test_hook_lgb(lgbm_model, inp_data):
assert signature.returns == returns


@pytest.mark.parametrize("model", ["classifier", "regressor", "pipeline"])
@pytest.mark.parametrize(
"model", ["classifier", "regressor", "pipeline", "outlier"]
)
def test_model_type__predict(model, inp_data, request):
model = request.getfixturevalue(model)
model_type = ModelAnalyzer.analyze(model, sample_data=inp_data)
Expand All @@ -221,7 +231,14 @@ def test_model_type__reg_predict_proba(regressor, inp_data):
model_type.call_method("predict_proba", inp_data)


@pytest.mark.parametrize("model", ["classifier", "regressor"])
def test_model_type__outlier_predict_proba(outlier, inp_data):
model_type = ModelAnalyzer.analyze(outlier, sample_data=inp_data)

with pytest.raises(ValueError):
model_type.call_method("predict_proba", inp_data)


@pytest.mark.parametrize("model", ["classifier", "regressor", "outlier"])
def test_model_type__dump_load(tmpdir, model, inp_data, request):
model = request.getfixturevalue(model)
model_type = ModelAnalyzer.analyze(model, sample_data=inp_data)
Expand Down