This repo modify matterport/Mask_RCNN for implementation of Faster RCNN model
- Anaconda on Windows 10
- Python 3.6.6
- Use Spyder IDE edit my code
- GTX 1060 (Laptop)
- CUDA 10.1 + cudnn v8.0.4.30
- RAM: 16GB
The code can run on tf2.3
- Remove mask part
- Input Shapes dataset
- Input BCCD dataset
- Input VOC 2007 data
- Input Custom data
- Input multi voc format dataset
- Input COCO data
- Change backbone (use Keras application)
- Head layer reduce weights
- Inspect training results (model output and weights)
- Training results
- Data augmentation
- Install package can follow here
- Input data
-
Modify config
IMAGE_RESIZE_MODE = "none" or "square"
"square" can handle different size imageNUM_CLASSES
Set number of classes of custom dataset -
Use VOC annotation format (.xml)
-
Shapes dataset
mAP: 0.95 (100 samples)
VOC dataset
mAP: 0.49 (4952 samples)
BCCD dataset
mAP: 0.74 (72 samples)
Custom dataset (Digital Holographic Microscopy)
Paper: here
PSACAL VOC 2007 dataset: here
BCCD dataset: here
Hand dataset on my repo
Related work on my repo