A proposed network for the pixel-wise semantic segmentation of crops and weed with minimal memory overhead, it is experimented on three commonly used datasets
It was trained and tested using:
- NVIDIA Tesla P40 GPUs
- PyTorch 1.11.0
The datasets for testing and the model files must in the project root directory, which can be access via the following links to google drive
The experiment can be tested using the following commands, where the dataset parameter can be changed for the different datasets bweeds : Bonirob , cweeds : CWFID, rweeds : Rice seedlings
- Baseline (bweeds, cweeds, rweeds)
- cmd: python main_ours.py --dataset='bweeds' --backbone='baseline'
- MFF (bweeds, cweeds, rweeds)
- cmd: python main_ours_nostream.py --dataset='bweeds' --backbone='ours_l34rw_partial_weight'
- MFRWF (bweeds, cweeds, rweeds)
- cmd: python main_ours_nostream.py --dataset='bweeds' --backbone='ours_l34rw_partial_decoder'
- MFRWF + CWF (bweeds, cweeds, rweeds)
- cmd: python main_ours_nostream.py --dataset='bweeds' --backbone='ours_l34rw_fully'