Full Scene Reconstruction of a 3D scene (geometry, instance ids, semantic labels, and color) from an RGB Image. Based on Panoptic 3D Scene Reconstruction From a Single RGB Image: code | paper
-
Install Docker following the instructions on the link and nvidia-docker (for gpu support).
-
Clone this repo and its submodules
git clone --recursive -j8 [email protected]:jdgalviss/full-scene-reconstruction.git cd full-scene-reconstruction
-
Build Docker Container
docker build . -t scene_reconstruction
-
Run Docker container
source run_docker.sh
-
Download pretrained model and put it in the panoptic-reconstruction/data folder
-
Run inference inside docker container
python tools/test_net.py
-
Run Docker container. Make sure you set the in the run_docker.sh file to the correct path where you downloaded and extracted the data.
source run_docker.sh
-
Train Inside docker:
python tools/train_full_reconstruction.py --config configs/front3d_train_3d.yaml --output-path output/
-
Run Docker container
source run_docker.sh
-
Run evaluation: Make sure you set the correct path to the trained model in front3d_evaluate.yaml
python tools/evaluate_net.py --config configs/front3d_evaluate.yaml --output output/
-
Run jupyter lab inside Docker
jupyter lab --ip=0.0.0.0 --port=8888 --allow-root --no-browser
If docker build fails due to missing cuda libraries, edit the file in /etc/docker/daemon.json so it looks like this:
{
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
},
"default-runtime": "nvidia"
}