Skip to content

Commit

Permalink
spelling fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
jdtuck committed Jun 21, 2021
1 parent 2936e49 commit d2d8620
Show file tree
Hide file tree
Showing 22 changed files with 48 additions and 48 deletions.
8 changes: 4 additions & 4 deletions R/elastic_lpcr_regression.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
#' Elastic Logisitc Prinipcal Component Regression
#' Elastic logistic Principal Component Regression
#'
#' This function identifies a logistic regression model with phase-variability
#' using elastic pca
#'
#' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples
#' @param y vector of size \eqn{M} lables
#' @param time vector of size \eqn{N} describing the sample points
#' @param pca.method string specifing pca method (options = "combined",
#' @param pca.method string specifying pca method (options = "combined",
#' "vert", or "horiz", default = "combined")
#' @param no scalar specifify number of principal components (default=5)
#' @param no scalar specify number of principal components (default=5)
#' @param smooth_data smooth data using box filter (default = F)
#' @param sparam number of times to apply box filter (default = 25)
#' @return Returns a lpcr object containing
Expand All @@ -18,7 +18,7 @@
#' \item{warp_data}{fdawarp object of aligned data}
#' \item{pca}{pca object of principal components}
#' \item{Loss}{logistic loss}
#' \item{pca.method}{string specifing pca method used}
#' \item{pca.method}{string specifying pca method used}
#' @keywords srvf alignment regression
#' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic
#' Functional Principal Component Regression,” Statistical Analysis and Data
Expand Down
8 changes: 4 additions & 4 deletions R/elastic_mlpcr_regression.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
#' Elastic Multinomial Logisitc Prinipcal Component Regression
#' Elastic Multinomial logistic Principal Component Regression
#'
#' This function identifies a multinomial logistic regression model with phase-variability
#' using elastic pca
#'
#' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples
#' @param y vector of size \eqn{M} labels
#' @param time vector of size \eqn{N} describing the sample points
#' @param pca.method string specifing pca method (options = "combined",
#' @param pca.method string specifying pca method (options = "combined",
#' "vert", or "horiz", default = "combined")
#' @param no scalar specifify number of principal components (default=5)
#' @param no scalar specify number of principal components (default=5)
#' @param smooth_data smooth data using box filter (default = F)
#' @param sparam number of times to apply box filter (default = 25)
#' @return Returns a mlpcr object containing
Expand All @@ -19,7 +19,7 @@
#' \item{warp_data}{fdawarp object of aligned data}
#' \item{pca}{pca object of principal components}
#' \item{Loss}{logistic loss}
#' \item{pca.method}{string specifing pca method used}
#' \item{pca.method}{string specifying pca method used}
#' @keywords srvf alignment regression
#' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic
#' Functional Principal Component Regression,” Statistical Analysis and Data
Expand Down
8 changes: 4 additions & 4 deletions R/elastic_pcr_regression.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@
#' Elastic Linear Prinipcal Component Regression
#' Elastic Linear Principal Component Regression
#'
#' This function identifies a regression model with phase-variability
#' using elastic pca
#'
#' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples
#' @param y vector of size \eqn{M} responses
#' @param time vector of size \eqn{N} describing the sample points
#' @param pca.method string specifing pca method (options = "combined",
#' @param pca.method string specifying pca method (options = "combined",
#' "vert", or "horiz", default = "combined")
#' @param no scalar specifify number of principal components (default=5)
#' @param no scalar specify number of principal components (default=5)
#' @param smooth_data smooth data using box filter (default = F)
#' @param sparam number of times to apply box filter (default = 25)
#' @param parallel run in parallel (default = F)
Expand All @@ -20,7 +20,7 @@
#' \item{warp_data}{fdawarp object of aligned data}
#' \item{pca}{pca object of principal components}
#' \item{SSE}{sum of squared errors}
#' \item{pca.method}{string specifing pca method used}
#' \item{pca.method}{string specifying pca method used}
#' @keywords srvf alignment regression
#' @references J. D. Tucker, J. R. Lewis, and A. Srivastava, “Elastic
#' Functional Principal Component Regression,” Statistical Analysis and Data
Expand Down
2 changes: 1 addition & 1 deletion R/function_group_warp_bayes.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
#' @param f matrix (\eqn{N} x \eqn{M}) of \eqn{M} functions with \eqn{N} samples
#' @param time sample points of functions
#' @param iter number of iterations (default = 150000)
#' @param powera Dirchelet prior parameter (default 1)
#' @param powera Dirichlet prior parameter (default 1)
#' @param times factor of length of subsample points to look at (default = 5)
#' @param tau standard deviation of Normal prior for increment (default ceil(times*.4))
#' @param gp number of colors in plots (default seq(dim(f)[2]))
Expand Down
2 changes: 1 addition & 1 deletion R/joint_gauss_model.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
#' This function models the functional data using a Gaussian model extracted from
#' the principal components of the srvfs using the joint model
#'
#' @param warp_data fdawarp objecet from \link{time_warping} of aligned data
#' @param warp_data fdawarp object from \link{time_warping} of aligned data
#' @param n number of random samples (n = 1)
#' @param no number of principal components (n=4)
#' @return Returns a fdawarp object containing \item{fs}{random aligned samples}
Expand Down
6 changes: 3 additions & 3 deletions R/jointfPCA.R
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,12 @@
#' This function calculates amplitude and phase joint functional principal component
#' analysis on aligned data
#'
#' @param warp_data fdawarp objecet from \link{time_warping} of aligned data
#' @param no number of prinicpal components to extract
#' @param warp_data fdawarp object from \link{time_warping} of aligned data
#' @param no number of principal components to extract
#' @param id integration point for f0 (default = midpoint)
#' @param C balance value (default = NULL)
#' @param ci geodesic standard deviations (default = c(-1,0,1))
#' @param showplot show plots of prinipal directions (default = T)
#' @param showplot show plots of principal directions (default = T)
#' @return Returns a list containing \item{q_pca}{srvf principal directions}
#' \item{f_pca}{f principal directions}
#' \item{latent}{latent values}
Expand Down
2 changes: 1 addition & 1 deletion R/pair_align_functions.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
#' @param lambda controls amount of warping (default = 0)
#' @param method controls which optimization method (default="DP") options are
#' Dynamic Programming ("DP"), Coordinate Descent ("DP2"), Riemannian BFGS
#' ("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirchelet Bayesian ("dBayes"),
#' ("RBFGS"), Simultaneous Alignment ("SIMUL"), Dirichlet Bayesian ("dBayes"),
#' and Expo-Map Bayesian ("expBayes")
#' @param w controls LRBFGS (default = 0.01)
#' @param iter number of mcmc iterations for mcmc method (default 2000)
Expand Down
2 changes: 1 addition & 1 deletion R/pair_align_functions_bayes.R
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
#' @param iter number of iterations (default = 15000)
#' @param times factor of length of subsample points to look at (default = 5)
#' @param tau standard deviation of Normal prior for increment (default ceil(times*.4))
#' @param powera Dirchelet prior parameter (default 1)
#' @param powera Dirichlet prior parameter (default 1)
#' @param showplot shows plots of functions (default = T)
#' @param extrainfo T/F whether additional information is returned
#' @return Returns a list containing \item{f1}{function 1}
Expand Down
4 changes: 2 additions & 2 deletions R/predict.lpcr.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#' Elastic Prediction for functional logisitc PCR Model
#' Elastic Prediction for functional logistic PCR Model
#'
#' This function performs prediction from an elastic logistic fPCR regression model
#' with phase-variability
Expand All @@ -8,7 +8,7 @@
#' @param y An optional vector of labels to calculate PC. If omitted, PC is NULL
#' @param ... additional arguments affecting the predictions produced
#' @return Returns a list containing
#' \item{y_pred}{predicted probabilites of the class of newdata}
#' \item{y_pred}{predicted probabilities of the class of newdata}
#' \item{y_labels}{class labels of newdata}
#' \item{PC}{probability of classification}
#' @keywords srvf alignment regression
Expand Down
4 changes: 2 additions & 2 deletions R/predict.mlpcr.R
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
#' Elastic Prediction for functional multinomial logisitc PCR Model
#' Elastic Prediction for functional multinomial logistic PCR Model
#'
#' This function performs prediction from an elastic multinomial logistic fPCR regression model
#' with phase-variability
Expand All @@ -8,7 +8,7 @@
#' @param y An optional vector of labels to calculate PC. If omitted, PC is NULL
#' @param ... additional arguments affecting the predictions produced
#' @return Returns a list containing
#' \item{y_pred}{predicted probabilites of the class of newdata}
#' \item{y_pred}{predicted probabilities of the class of newdata}
#' \item{y_labels}{class labels of newdata}
#' \item{PC}{probability of classification per class}
#' \item{PC.comb}{total probability of classification}
Expand Down
2 changes: 1 addition & 1 deletion R/tolerance.R
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ bootTB <- function(f, time, a=.05, p=.99, B=500, no = 5, parallel=T){
#' Tolerance Bound Calculation using Elastic Functional PCA
#'
#' This function computes tolerance bounds for functional data containing
#' phase and amplitude variation using principal component anlaysis
#' phase and amplitude variation using principal component analysis
#'
#' @param f matrix of functions
#' @param time vector describing time sampling
Expand Down
8 changes: 4 additions & 4 deletions man/elastic.lpcr.regression.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 4 additions & 4 deletions man/elastic.mlpcr.regression.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

8 changes: 4 additions & 4 deletions man/elastic.pcr.regression.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/function_group_warp_bayes.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

6 changes: 3 additions & 3 deletions man/jointFPCA.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/joint_gauss_model.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/pair_align_functions.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/pair_align_functions_bayes.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion man/pcaTB.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions man/predict.lpcr.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

4 changes: 2 additions & 2 deletions man/predict.mlpcr.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

0 comments on commit d2d8620

Please sign in to comment.