Skip to content

jiaxue-ai/pytorch-material-classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Material Classification

This repo provides examples for material classification in GTOS, GTOS-MOBILE, DTD and MINC dataset using PyTorch.

Setup

Prerequisites

  • Ubuntu
  • Pytorch
    • pip3 install torch torchvision
  • Easydict
    • pip3 install easydict
  • tqdm
    • pip3 install tqdm
  • Pytorch-Encoding
    • pip3 install torch-encoding
    • Note: You need to install Pytorch 1.0 for torch-encoding, or you can modify the encoding layer based on this for latest Pytorch.

Getting Started

  • Clone this repo:
git clone https://github.com/jiaxue1993/pytorch-material-classification.git
cd pytorch-material-classification/
  • Download GTOS, GTOS_MOBILE, DTD, MINC to the dataset folder

  • Navigate to different experiment folder and train network. For example, you can finetune ResNet on GTOS-MOBILE dataset with followint command

cd experiments/gtos_mobile.finetune.resnet/
python train.py

Accuracy & Statistics

Base Model Dataset Method Accuracy Pretrained Model
MobileNet GTOS Finetune 80.4 One Drive
DAIN 82.5
DEP 83.3
TEAN 84.7
ResNet-50 DTD DEP 73.2
MINC DEP 82.0

Citation

Please consider citing following projects in your publications if it helps your research.

Differential Angular Imaging for Material Recognition [pdf]

@inproceedings{xue2017differential,
  title={Differential angular imaging for material recognition},
  author={Xue, Jia and Zhang, Hang and Dana, Kristin and Nishino, Ko},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={764--773},
  year={2017}
}

Deep Texture Manifold for Ground Terrain Recognition [pdf]

@inproceedings{xue2018deep,
  title={Deep texture manifold for ground terrain recognition},
  author={Xue, Jia and Zhang, Hang and Dana, Kristin},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={558--567},
  year={2018}
}

Deep TEN: Texture Encoding Network [pdf]

@inproceedings{zhang2017deep,
  title={Deep ten: Texture encoding network},
  author={Zhang, Hang and Xue, Jia and Dana, Kristin},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={708--717},
  year={2017}
}

Differential Viewpoints for Ground Terrain Material Recognition [pdf][arxiv]

@article{xue2020differential,
  title={Differential Viewpoints for Ground Terrain Material Recognition},
  author={Xue, Jia and Zhang, Hang and Nishino, Ko and Dana, Kristin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2020},
  publisher={IEEE}
}

Acknowledgement

Part of the code comes from PyTorch-Encoding, TorchSeg, pytorch-mobilenet-v2