-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2530b23
commit 10c359e
Showing
14 changed files
with
2,563 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
import numpy as np | ||
import argparse | ||
import json | ||
from PIL import Image | ||
from os.path import join | ||
|
||
|
||
def fast_hist(a, b, n): | ||
k = (a >= 0) & (a < n) | ||
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n) | ||
|
||
|
||
def per_class_iu(hist): | ||
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) | ||
|
||
|
||
def label_mapping(input, mapping): | ||
output = np.copy(input) | ||
for ind in range(len(mapping)): | ||
output[input == mapping[ind][0]] = mapping[ind][1] | ||
return np.array(output, dtype=np.int64) | ||
|
||
|
||
def compute_mIoU(gt_dir, pred_dir, devkit_dir=''): | ||
""" | ||
Compute IoU given the predicted colorized images and | ||
""" | ||
with open(join(devkit_dir, 'info.json'), 'r') as fp: | ||
info = json.load(fp) | ||
num_classes = np.int(info['classes']) | ||
print(('Num classes', num_classes)) | ||
name_classes = np.array(info['label'], dtype=np.str) | ||
mapping = np.array(info['label2train'], dtype=np.int) | ||
hist = np.zeros((num_classes, num_classes)) | ||
|
||
image_path_list = join(devkit_dir, 'val.txt') | ||
label_path_list = join(devkit_dir, 'label.txt') | ||
gt_imgs = open(label_path_list, 'r').read().splitlines() | ||
gt_imgs = [join(gt_dir, x) for x in gt_imgs] | ||
pred_imgs = open(image_path_list, 'r').read().splitlines() | ||
pred_imgs = [join(pred_dir, x.split('/')[-1]) for x in pred_imgs] | ||
|
||
for ind in range(len(gt_imgs)): | ||
pred = np.array(Image.open(pred_imgs[ind])) | ||
label = np.array(Image.open(gt_imgs[ind])) | ||
label = label_mapping(label, mapping) | ||
if len(label.shape) == 3 and label.shape[2]==4: | ||
label = label[:,:,0] | ||
if len(label.flatten()) != len(pred.flatten()): | ||
print(('Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(len(label.flatten()), len(pred.flatten()), gt_imgs[ind], pred_imgs[ind]))) | ||
continue | ||
hist += fast_hist(label.flatten(), pred.flatten(), num_classes) | ||
if ind > 0 and ind % 10 == 0: | ||
print(('{:d} / {:d}: {:0.2f}'.format(ind, len(gt_imgs), 100*np.mean(per_class_iu(hist))))) | ||
|
||
mIoUs = per_class_iu(hist) | ||
for ind_class in range(num_classes): | ||
print(('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2)))) | ||
print(('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)))) | ||
return mIoUs | ||
|
||
|
||
def main(args): | ||
compute_mIoU(args.gt_dir, args.pred_dir, args.devkit_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('gt_dir', type=str, help='directory which stores CityScapes val gt images') | ||
parser.add_argument('pred_dir', type=str, help='directory which stores CityScapes val pred images') | ||
parser.add_argument('--devkit_dir', default='dataset/cityscapes_list', help='base directory of cityscapes') | ||
args = parser.parse_args() | ||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
import numpy as np | ||
import argparse | ||
import json | ||
from PIL import Image | ||
from os.path import join | ||
import os.path as osp | ||
|
||
|
||
def fast_hist(a, b, n): | ||
k = (a >= 0) & (a < n) | ||
return np.bincount(n * a[k].astype(int) + b[k], minlength=n ** 2).reshape(n, n) | ||
|
||
|
||
def per_class_iu(hist): | ||
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) | ||
|
||
|
||
def label_mapping(input, mapping): | ||
output = np.copy(input) | ||
for ind in range(len(mapping)): | ||
output[input == mapping[ind][0]] = mapping[ind][1] | ||
return np.array(output, dtype=np.int64) | ||
|
||
|
||
def compute_mIoU(gt_dir, pred_dir, devkit_dir=''): | ||
""" | ||
Compute IoU given the predicted colorized images and | ||
""" | ||
with open(join(devkit_dir, 'info.json'), 'r') as fp: | ||
info = json.load(fp) | ||
num_classes = np.int(info['classes']) | ||
print(('Num classes', num_classes)) | ||
name_classes = np.array(info['label'], dtype=np.str) | ||
mapping = np.array(info['label2train'], dtype=np.int) | ||
hist = np.zeros((num_classes, num_classes)) | ||
|
||
image_path_list = join(devkit_dir, 'val.txt') | ||
label_path_list = join(devkit_dir, 'label.txt') | ||
gt_imgs = open(label_path_list, 'r').read().splitlines() | ||
gt_imgs = [join(gt_dir, x) for x in gt_imgs] | ||
pred_imgs = open(image_path_list, 'r').read().splitlines() | ||
pred_imgs = [join(pred_dir, x.split('/')[-1]) for x in pred_imgs] | ||
|
||
for ind in range(len(gt_imgs)): | ||
pred = np.array(Image.open(pred_imgs[ind])) | ||
label = np.array(Image.open(gt_imgs[ind])) | ||
label = label_mapping(label, mapping) | ||
if len(label.shape) == 3 and label.shape[2]==4: | ||
label = label[:,:,0] | ||
if len(label.flatten()) != len(pred.flatten()): | ||
print(('Skipping: len(gt) = {:d}, len(pred) = {:d}, {:s}, {:s}'.format(len(label.flatten()), len(pred.flatten()), gt_imgs[ind], pred_imgs[ind]))) | ||
continue | ||
hist += fast_hist(label.flatten(), pred.flatten(), num_classes) | ||
if ind > 0 and ind % 10 == 0: | ||
print(('{:d} / {:d}: {:0.2f}'.format(ind, len(gt_imgs), 100*np.mean(per_class_iu(hist))))) | ||
|
||
mIoUs = per_class_iu(hist) | ||
scores = '' | ||
for ind_class in range(num_classes): | ||
print(('===>' + name_classes[ind_class] + ':\t' + str(round(mIoUs[ind_class] * 100, 2)))) | ||
scores = scores + str(round(mIoUs[ind_class] * 100, 2)) + ',' | ||
print(('===> mIoU: ' + str(round(np.nanmean(mIoUs) * 100, 2)))) | ||
scores = scores + str(round(np.nanmean(mIoUs) * 100, 2)) | ||
|
||
test_log = open(osp.join('./result', 'test_log.txt'), 'a') | ||
test_log.write(scores + "\n") | ||
test_log.close() | ||
return mIoUs | ||
|
||
|
||
def main(args): | ||
compute_mIoU(args.gt_dir, args.pred_dir, args.devkit_dir) | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('gt_dir', type=str, help='directory which stores CityScapes val gt images') | ||
parser.add_argument('pred_dir', type=str, help='directory which stores CityScapes val pred images') | ||
parser.add_argument('--devkit_dir', default='dataset/cityscapes_list', help='base directory of cityscapes') | ||
args = parser.parse_args() | ||
main(args) |
Oops, something went wrong.