Skip to content

A Comparative Evaluation of Active Learning Methods in Deep Recommendation

Notifications You must be signed in to change notification settings

k9luo/Deep-Preference-Elicitation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A-Comparative-Evaluation-of-Active-Learning-Methods-in-Deep-Recommendation

Example Commands

Data Split

For fine-tuning, to split ML1M dataset use

python3 getmovielens.py --implicit

For fine-tuning, to split Yelp dataset use

python3 getyelp.py --enable_implicit --name yelp/yelp_academic_dataset_review.json

For active learning, to split ML1M dataset use

python3 getmovielens.py --implicit --disable-validation

For active learning, to split Yelp dataset use

python3 getyelp.py --enable_implicit --name yelp/yelp_academic_dataset_review.json --disable_validation

Single Run

For ML1M,

python3 main.py --path data/ --active_model Greedy --active_iteration 50

For Yelp,

python3 main.py --path data/ --active_model Greedy --epoch 300 --lamb 0.001 --rank 200 --active_iteration 50

Other Run Examples

Please refer to reproduce_ml1m_final_result.sh and reproduce_yelp_final_result.sh.