Skip to content

karthik86248/BANG-Billion-Scale-ANN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BANG : Billion-Scale Approximate Nearest Neighbor Search using a Single GPU

Efficient Approximate Nearest Neighbour Search using GPU. We have three variants of the implementation :

  • BANG Base : The graph is stored on the host RAM, PQ compressed vectors on GPU.
  • BANG In-memory : The graph and PQ compressed vectors, both are stored on GPU.
  • BANG Exact-distance : The graph is stored on GPU. PQ compressed vectors are not used. Distance computations are performed using the base dataset vectors.

Billion scale datasets can be used with BANG Base only.

The source code for each variant is present in the respective folders.

Prerequisities

  • Sufficient Host RAM to store the graph per the dataset (Highest being 640 GB for DEEP1B)
  • NVIDIA A100 80GB GPU card
  • CUDA version >= 11.8
  • gcc and g++ 11.0 or higher (C++11 support)
  • Boost C++ libraries (https://www.boost.org/) version >=1.74
  • DiskANN (follow the instructions provided in https://github.com/microsoft/DiskANN)

Dataset repositories

SIFT and GIST datasets can be downloaded from http://corpus-texmex.irisa.fr/

GLOVE200 and NYTIMES can be downloaded from https://github.com/erikbern/ann-benchmarks/blob/master/README.md

MNIST8M can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#mnist8m

DEEP100M is to be cut out from DEEP1B. Take first 100M points. https://big-ann-benchmarks.com/

Note: For MNIST, zero rows must be removed from the base file.

Note: For GIST1M, there were only 1000 queries. Therefore 1000 queries were repeated 10 times to give queries file of 10,000 queries.

Code Build

TBD. For BANG_Base version, refer: (https://github.com/karthik86248/BANG-Billion-Scale-ANN/blob/main/BANG_Base/ReadMe.pdf)

make 

Graph Generation

TBD. For BANG_Base version, refer: (https://github.com/karthik86248/BANG-Billion-Scale-ANN/blob/main/BANG_Base/ReadMe.pdf)

  • Download the base dataset from the respective dataset repository. The base dataset, query vectors and the groundtruth files.
  • Generate the graph using the build_disk_index utility.
e.g../build_disk_index --data_type uint8 --dist_fn l2 --data_path /mnt/hdd_volume/datasets/sift1b/bigann_base.bin --index_path_prefix sift1b_index -R 64 -L 200 -B 70 -M 48
  • The o/p generates several files. Below are required by BANG
<X>_index_disk.index -> The Vamana graph. Convet this file to bin format using the index_to_binary_graph.py in utils folder.
<X>_index_pq_compressed.bin -> Compressed vectors
<X>_index_pq_pivots.bin 
<X>_index_pq_pivots.bin_centroid.bin
<X>_index_pq_pivots.bin_chunk_offsets.bin

ANN Search on the generated graph

TBD. For BANG_Base version, refer: (https://github.com/karthik86248/BANG-Billion-Scale-ANN/blob/main/BANG_Base/ReadMe.pdf)

./bang <<X>_index_pq_pivots.bin> <<X>_index_pq_compressed.bin> <<X>_index_disk.bin> <query vectors file in bin format> <<X>_index_pq_pivots.bin_chunk_offsets.bin> <<X>_index_pq_pivots.bin_centroid.bin> <groundtruth file in bin format> <# of query vectors> <Thread block size of compute_parent kernel> <Thread block size of populate_pqDist_par kernel> <Thread block size of compute_neighborDist_par kernel> <Thread block size of neighbor_filtering_new kernel> <recall factor i.e. top-k> <# of OMP threads> <debug flags>

An example is shown below:

./bang sift1b_index_pq_pivots.bin  sift1b_index_pq_compressed.bin sift1b_index_disk.bin  sift1b_query.bin sift1b_index_pq_pivots.bin_chunk_offsets.bin sift1b_index_pq_pivots.bin_centroid.bin  sift1b_groundtruth.bin 10000 1 256 512 256 10 64 1

Cost Analysis

A note on the cost analysis (CapEx+Opex) is uploaded to the root directory.

About

GPU-Based Approximate Nearest Neighbor Search

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published