Skip to content

khairul-me/Enhanced-Sonar-Sensor-Accuracy-using-Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 

Repository files navigation

Enhanced Sonar Sensor Accuracy using Machine Learning

Created by: Md Khairul Islam

Hobart and William Smith Colleges

Double major in Robotics and Computer Science

Table of Contents

Overview

This project implements sophisticated machine learning techniques to enhance sonar sensor accuracy, focusing on improving object detection and classification through ensemble clustering and deep learning approaches.

Basic Operating Principles

sequenceDiagram
    participant S as Sensor
    participant D as Data Processor
    participant ML as ML System
    
    Note over S: Collect Data
    S ->> D: Raw Measurements
    D ->> ML: Processed Data
    Note over ML: Apply ML Models
    ML -->> D: Predictions
    D -->> S: Adjust Parameters
Loading

System Architecture

flowchart TB
    subgraph Input["Data Collection"]
        A[Sonar Sensor] --> B[Data Acquisition]
        B --> C[Initial Processing]
    end

    subgraph ML["ML Pipeline"]
        C --> D[Feature Engineering]
        D --> E[Data Preprocessing]
        E --> F[Model Processing]
        
        subgraph Models["ML Models"]
            G[Clustering]
            H[CNN]
            I[Ensemble]
        end
        
        F --> Models
    end

    subgraph Output["Results"]
        Models --> J[Predictions]
        J --> K[Performance Metrics]
        K --> L[Final Output]
    end

    style Input fill:#e1f5fe
    style ML fill:#fff3e0
    style Output fill:#e8f5e9
    style Models fill:#f3e5f5
Loading

Data Processing Pipeline

flowchart LR
    A[Raw Data] --> B[Feature Engineering]
    B --> C[Data Cleaning]
    C --> D[Preprocessing]
    D --> E[Model Input]
    
    subgraph Processing["Processing Steps"]
        F[Remove Outliers]
        G[Handle Missing Values]
        H[Normalize Data]
        I[Feature Selection]
    end
    
    C --> Processing
    Processing --> D
    
    style A fill:#f3e5f5
    style B fill:#e1f5fe
    style C fill:#fff3e0
    style D fill:#e8f5e9
    style E fill:#f3e5f5
    style Processing fill:#e1f5fe
Loading

Neural Network Architecture

flowchart LR
    A[Input Layer] --> B[Conv1D Layer 1]
    B --> C[MaxPool1D]
    C --> D[Conv1D Layer 2]
    D --> E[MaxPool2D]
    E --> F[Flatten]
    F --> G[Dense Layer]
    G --> H[Dropout]
    H --> I[Output Layer]
    
    style A fill:#e1f5fe
    style B fill:#fff3e0
    style C fill:#f3e5f5
    style D fill:#e8f5e9
    style E fill:#f3e5f5
    style F fill:#fff3e0
    style G fill:#e1f5fe
    style H fill:#e8f5e9
    style I fill:#f3e5f5
Loading

Signal Processing

flowchart TB
    subgraph Processing["Signal Processing System"]
        A[Raw Signal] --> B[Preprocessing]
        
        subgraph Filters["Filtering Stages"]
            C[Noise Removal]
            D[Outlier Detection]
            E[Signal Enhancement]
        end
        
        B --> Filters
        Filters --> F[Final Signal]
    end
    
    style A fill:#e1f5fe
    style B fill:#fff3e0
    style Filters fill:#f3e5f5
    style F fill:#e8f5e9
Loading

Performance Analysis

flowchart TB
    subgraph Performance["Performance Metrics"]
        A[Raw Data] --> Analysis
        
        subgraph Metrics["Analysis Metrics"]
            B[Clustering Performance]
            C[Error Rates]
            D[Accuracy Scores]
            E[Processing Time]
        end
        
        Analysis --> B & C & D & E
        
        subgraph Results["Improvements"]
            F[Enhanced Accuracy]
            G[Noise Reduction]
            H[Better Detection]
        end
        
        B & C & D & E --> F
        F --> G
        G --> H
    end
    
    style A fill:#e1f5fe
    style Metrics fill:#fff3e0
    style Results fill:#e8f5e9
Loading

Model Training

flowchart TB
    subgraph Training["Training Process"]
        A[Training Data] --> B[Data Preparation]
        B --> C[Model Training]
        
        subgraph Validation["Validation"]
            D[Cross Validation]
            E[Performance Metrics]
            F[Model Tuning]
        end
        
        C --> Validation
        Validation --> G[Final Model]
    end
    
    style A fill:#e1f5fe
    style B fill:#fff3e0
    style C fill:#f3e5f5
    style Validation fill:#e8f5e9
    style G fill:#e1f5fe
Loading

Troubleshooting

flowchart TD
    A[Issue Detection] --> B{Problem Type}
    
    B -->|Data Issues| C[Check Data Quality]
    B -->|Model Problems| D[Verify Model]
    B -->|Performance| E[Optimize System]
    
    C --> F[Clean Data]
    D --> G[Adjust Parameters]
    E --> H[Improve Efficiency]
    
    F & G & H --> I[Resolution]
    
    style A fill:#e1f5fe
    style B fill:#fff3e0
    style C fill:#f3e5f5
    style D fill:#f3e5f5
    style E fill:#f3e5f5
    style F fill:#e8f5e9
    style G fill:#e8f5e9
    style H fill:#e8f5e9
    style I fill:#e1f5fe
Loading

Basic Usage

from sonar_ml_processor import SonarProcessor

# Initialize processor
processor = SonarProcessor()

# Process data
results = processor.process_data(sensor_data)

# Get predictions
predictions = processor.predict(results)

Advanced Features

Data Processing & Analysis

  • Feature Engineering
    • Distance calculations
    • Velocity analysis
    • Acceleration metrics
    • Signal characteristics
  • Data Cleaning
    • Outlier removal
    • Noise reduction
    • Missing value handling
  • Advanced Processing
    • Signal enhancement
    • Feature selection
    • Dimensionality reduction

Machine Learning Implementation

  • Clustering Algorithms
    • KMeans
    • DBSCAN
    • Spectral Clustering
  • Deep Learning
    • 1D CNN architecture
    • Custom loss functions
    • Advanced optimizers
  • Ensemble Methods
    • Model combination
    • Weighted voting
    • Prediction aggregation

Performance Metrics

  • Clustering Performance
    • Silhouette score
    • Calinski-Harabasz index
    • Davies-Bouldin index
  • Model Accuracy
    • Precision
    • Recall
    • F1-score
  • System Efficiency
    • Processing time
    • Memory usage
    • Resource utilization

Installation

Requirements

pandas==2.0.0
numpy==1.24.0
scikit-learn==1.2.2
tensorflow==2.12.0
matplotlib==3.7.1
seaborn==0.12.2
scipy==1.10.1
joblib==1.2.0

Setup

# Clone repository
git clone https://github.com/yourusername/enhanced-sonar-ml.git
cd enhanced-sonar-ml

# Install dependencies
pip install -r requirements.txt

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For issues, questions, or contributions:


Made with 💡 by Md Khairul Islam

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages