Created by: Md Khairul Islam
Hobart and William Smith Colleges
Double major in Robotics and Computer Science
- Overview
- System Architecture
- Data Processing Pipeline
- Hardware Setup
- Neural Network Architecture
- Signal Processing
- Performance Analysis
- Model Training
- Basic Usage
- Advanced Features
- Troubleshooting
This project implements sophisticated machine learning techniques to enhance sonar sensor accuracy, focusing on improving object detection and classification through ensemble clustering and deep learning approaches.
sequenceDiagram
participant S as Sensor
participant D as Data Processor
participant ML as ML System
Note over S: Collect Data
S ->> D: Raw Measurements
D ->> ML: Processed Data
Note over ML: Apply ML Models
ML -->> D: Predictions
D -->> S: Adjust Parameters
flowchart TB
subgraph Input["Data Collection"]
A[Sonar Sensor] --> B[Data Acquisition]
B --> C[Initial Processing]
end
subgraph ML["ML Pipeline"]
C --> D[Feature Engineering]
D --> E[Data Preprocessing]
E --> F[Model Processing]
subgraph Models["ML Models"]
G[Clustering]
H[CNN]
I[Ensemble]
end
F --> Models
end
subgraph Output["Results"]
Models --> J[Predictions]
J --> K[Performance Metrics]
K --> L[Final Output]
end
style Input fill:#e1f5fe
style ML fill:#fff3e0
style Output fill:#e8f5e9
style Models fill:#f3e5f5
flowchart LR
A[Raw Data] --> B[Feature Engineering]
B --> C[Data Cleaning]
C --> D[Preprocessing]
D --> E[Model Input]
subgraph Processing["Processing Steps"]
F[Remove Outliers]
G[Handle Missing Values]
H[Normalize Data]
I[Feature Selection]
end
C --> Processing
Processing --> D
style A fill:#f3e5f5
style B fill:#e1f5fe
style C fill:#fff3e0
style D fill:#e8f5e9
style E fill:#f3e5f5
style Processing fill:#e1f5fe
flowchart LR
A[Input Layer] --> B[Conv1D Layer 1]
B --> C[MaxPool1D]
C --> D[Conv1D Layer 2]
D --> E[MaxPool2D]
E --> F[Flatten]
F --> G[Dense Layer]
G --> H[Dropout]
H --> I[Output Layer]
style A fill:#e1f5fe
style B fill:#fff3e0
style C fill:#f3e5f5
style D fill:#e8f5e9
style E fill:#f3e5f5
style F fill:#fff3e0
style G fill:#e1f5fe
style H fill:#e8f5e9
style I fill:#f3e5f5
flowchart TB
subgraph Processing["Signal Processing System"]
A[Raw Signal] --> B[Preprocessing]
subgraph Filters["Filtering Stages"]
C[Noise Removal]
D[Outlier Detection]
E[Signal Enhancement]
end
B --> Filters
Filters --> F[Final Signal]
end
style A fill:#e1f5fe
style B fill:#fff3e0
style Filters fill:#f3e5f5
style F fill:#e8f5e9
flowchart TB
subgraph Performance["Performance Metrics"]
A[Raw Data] --> Analysis
subgraph Metrics["Analysis Metrics"]
B[Clustering Performance]
C[Error Rates]
D[Accuracy Scores]
E[Processing Time]
end
Analysis --> B & C & D & E
subgraph Results["Improvements"]
F[Enhanced Accuracy]
G[Noise Reduction]
H[Better Detection]
end
B & C & D & E --> F
F --> G
G --> H
end
style A fill:#e1f5fe
style Metrics fill:#fff3e0
style Results fill:#e8f5e9
flowchart TB
subgraph Training["Training Process"]
A[Training Data] --> B[Data Preparation]
B --> C[Model Training]
subgraph Validation["Validation"]
D[Cross Validation]
E[Performance Metrics]
F[Model Tuning]
end
C --> Validation
Validation --> G[Final Model]
end
style A fill:#e1f5fe
style B fill:#fff3e0
style C fill:#f3e5f5
style Validation fill:#e8f5e9
style G fill:#e1f5fe
flowchart TD
A[Issue Detection] --> B{Problem Type}
B -->|Data Issues| C[Check Data Quality]
B -->|Model Problems| D[Verify Model]
B -->|Performance| E[Optimize System]
C --> F[Clean Data]
D --> G[Adjust Parameters]
E --> H[Improve Efficiency]
F & G & H --> I[Resolution]
style A fill:#e1f5fe
style B fill:#fff3e0
style C fill:#f3e5f5
style D fill:#f3e5f5
style E fill:#f3e5f5
style F fill:#e8f5e9
style G fill:#e8f5e9
style H fill:#e8f5e9
style I fill:#e1f5fe
from sonar_ml_processor import SonarProcessor
# Initialize processor
processor = SonarProcessor()
# Process data
results = processor.process_data(sensor_data)
# Get predictions
predictions = processor.predict(results)
- Feature Engineering
- Distance calculations
- Velocity analysis
- Acceleration metrics
- Signal characteristics
- Data Cleaning
- Outlier removal
- Noise reduction
- Missing value handling
- Advanced Processing
- Signal enhancement
- Feature selection
- Dimensionality reduction
- Clustering Algorithms
- KMeans
- DBSCAN
- Spectral Clustering
- Deep Learning
- 1D CNN architecture
- Custom loss functions
- Advanced optimizers
- Ensemble Methods
- Model combination
- Weighted voting
- Prediction aggregation
- Clustering Performance
- Silhouette score
- Calinski-Harabasz index
- Davies-Bouldin index
- Model Accuracy
- Precision
- Recall
- F1-score
- System Efficiency
- Processing time
- Memory usage
- Resource utilization
pandas==2.0.0
numpy==1.24.0
scikit-learn==1.2.2
tensorflow==2.12.0
matplotlib==3.7.1
seaborn==0.12.2
scipy==1.10.1
joblib==1.2.0
# Clone repository
git clone https://github.com/yourusername/enhanced-sonar-ml.git
cd enhanced-sonar-ml
# Install dependencies
pip install -r requirements.txt
This project is licensed under the MIT License - see the LICENSE file for details.
For issues, questions, or contributions:
- Open an issue on GitHub
- Contact: [email protected]
Made with 💡 by Md Khairul Islam