This repo is the official implementation of "Accuracy Enhancement Method for Speech Emotion Recognition from Spectrogram using Temporal Frequency Correlation and Positional Information Learning through Knowledge Transfer".
I saved the model as python dict() format like below:
torch.save({
'model_state_dict': model.state_dict(),
'CE': cross_entropy_loss
'L1': L1_loss
...
}, PATH)
So, you can load the pretrained weight like below:
# model.load_state_dict(torch.load(PATH_WEIGHT_FILE)['model_state_dict'])
model.load_state_dict(torch.load('./weight/teacher_92.64_CREMA_D.ckpt')['model_state_dict'])