A miniature version of Boulder, Pebble is a small ACME test server not suited for use as a production CA.
Pebble is NOT INTENDED FOR PRODUCTION USE. Pebble is for testing only.
By design Pebble will drop all of its state between invocations and will randomize keys/certificates used for issuance.
Pebble has several top level goals:
- Provide a simplified ACME testing front end
- Provide a test-bed for new and compatibility breaking ACME features
- Encourage ACME client best-practices
- Aggressively build in guardrails against non-testing usage
Pebble aims to address the need for ACME clients to have an easier to use, self-contained version of Boulder to test their clients against while developing ACME v2 support. Boulder is multi-process, requires heavy dependencies (MariaDB, gRPC, etc), and is operationally complex to integrate with other projects.
Where possible Pebble aims to be a test-bed for new ACME protocol features that can be used to inform later Boulder support. Pebble provides a way for Boulder developers to test compatibility breaking changes more aggressively than is appropriate for Boulder.
In places where the ACME specification allows customization/CA choice Pebble aims to make choices different from Boulder. For instance, Pebble changes the path structures for its resources and directory endpoints to differ from Boulder. The goal is to emphasize client specification compatibility and to avoid "over-fitting" on Boulder and the Let's Encrypt production service.
Lastly, Pebble will enforce it's test-only usage by aggressively building in
guardrails that make using it in a production setting impossible or very
inconvenient. Pebble will not support non-volatile storage or persistence
between executions. Pebble will also randomize keys/certificates used for
issuance. Where possible Pebble will make decisions that force clients to
implement ACME correctly (e.g. randomizing /directory
endpoint URLs to ensure
clients are not hardcoding URLs.)
Pebble is missing some ACME features (PRs are welcome!). It does not presently support pre-authorization or revoking a certificate issued by a different ACME account by proving authorization of all of the certificate's domains.
Pebble does not perform all of the same input validation as Boulder. Some domain names that would be rejected by Boulder/Let's Encrypt may work with Pebble.
Pebble does not enforce any rate limits. It is not presently an appropriate tool for testing that your client handles Boulder/Let's Encrypt rate limits correctly.
- Set up Go
- Add
~/go/bin
to your $PATH, or setGOBIN
to a directory that is in your $PATH already, so thatpebble
will be in your $PATH for easy execution.- One way to do this is to add
export PATH=$PATH:$HOME/go/bin
to your~/.profile
- One way to do this is to add
- git clone https://github.com/letsencrypt/pebble/
- cd pebble
- go install ./cmd/pebble
Assuming pebble is easily accessible in your $PATH:
pebble -config ./test/config/pebble-config.json
(otherwise replace pebble
with ~/go/bin/pebble
or $GOBIN/pebble
)
Afterwards you can access the Pebble server's ACME directory
at https://localhost:14000/dir
.
Pebble includes a docker-compose file that
will create a pebble
instance that uses a pebble-challtestsrv
instance for
DNS resolution with the correct ports mapped to the host system.
To download and start the containers run:
docker-compose up
Afterwards you can access the ACME API from your host machine at
https://localhost:14000/dir
, pebble
's management interface
at https://localhost:15000
and the pebble-challtestsrv
's management
interface at http://localhost:8055
.
To get started you may want to update the pebble-challtestsrv
mock DNS data
with a new default IPv4 address to use to respond to A
queries from pebble
:
curl --request POST --data '{"ip":"172.20.0.1"}' http://localhost:8055/set-default-ipv4
See the pebble-challtestsrv README for more information.
If you are running a one-off container for either pebble
or
pebble-challtestsrv
, you will need to manually map ports.
docker run -p 14000:14000 -p 15000:15000 ghcr.io/letsencrypt/pebble:latest
docker run -p 5001:5001 -p 5002:5002 -p 5003:5003 -p 8053:8053 -p 8055:8055 -p 8443:8443 ghcr.io/letsencrypt/pebble-challtestsrv:latest
Pebble releases are published as Docker images to the Github Container Registry
With a docker-compose file:
services:
pebble:
image: ghcr.io/letsencrypt/pebble:latest
command: -config /test/my-pebble-config.json
ports:
- 14000:14000 # ACME port
- 15000:15000 # Management port
environment:
- PEBBLE_VA_NOSLEEP=1
volumes:
- ./my-pebble-config.json:/test/my-pebble-config.json
With a Docker command:
docker run -p 14000:14000 -p 15000:15000 -e "PEBBLE_VA_NOSLEEP=1" ghcr.io/letsencrypt/pebble
# or
docker run -p 14000:14000 -p 15000:15000 -e "PEBBLE_VA_NOSLEEP=1" --mount src=$(pwd)/my-pebble-config.json,target=/test/my-pebble-config.json,type=bind ghcr.io/letsencrypt/pebble -config /test/my-pebble-config.json
To make it easier to test ACME clients and run challenge response servers without root privileges Pebble defaults to validating ACME challenges using unprivileged high ports:
- Default HTTP-01 Port: 5002
- Default TLS-ALPN-01 Port: 5001
These ports can be changed by editing the "httpPort"
and "tlsPort"
values of
the Pebble -config
file provided to pebble
.
Pebble's goal to aggressively support new protocol features and backwards compatibility breaking changes is slightly at odds with its goal to provide a simple, light-weight ACME test server for clients to use in integration tests. On the one hand we want to introduce breaking changes quickly and use Pebble as a test-bed for this. On the other we want to make sure we don't break client integration tests using Pebble too often.
As a balance to meet these two needs Pebble supports a -strict
flag. By
running Pebble with -strict false
changes known to break client compatibility
are disabled.
Presently we default -strict
to false but this will change in the future.
If you are using Pebble for integration tests and favour reliability over
learning about breaking changes ASAP please explicitly run Pebble with -strict false
.
By default Pebble uses the system DNS resolver, this may mean that caching causes
problems with DNS-01 validation. It may also mean that no DNSSEC validation is
performed.
You should configure your system's recursive DNS resolver according to your
needs or use the -dnsserver
flag to define an address to a DNS server.
pebble -dnsserver 10.10.10.10:5053
pebble -dnsserver 8.8.8.8:53
pebble -dnsserver :5053
You may find it useful to set pebble
's -dnsserver
to the address you used as
the -dns01
argument when starting up a pebble-challtestsrv
instance. This
will let you easily mock DNS data for Pebble. See the included
docker-compose.yml
and the pebble-challtestsrv
README
for more information.
By default Pebble will sleep a random number of seconds (from 0 to 15) between individual challenge validation attempts. This ensures clients don't make assumptions about when the challenge is solved from the CA side by observing a single request for a challenge response. Instead clients must poll the challenge to observe the state since the CA may send many validation requests.
To test issuance "at full speed" with no artificial sleeps set the environment
variable PEBBLE_VA_NOSLEEP
to 1
. E.g.
PEBBLE_VA_NOSLEEP=1 pebble -config ./test/config/pebble-config.json
The maximal number of seconds to sleep can be configured by defining
PEBBLE_VA_SLEEPTIME
. It must be set to a positive integer.
If you want to avoid the hassle of having to stand up a challenge response server for real HTTP-01, DNS-01 or TLS-ALPN-01 validation requests Pebble supports a mode that always treats challenge validation requests as successful. By default this mode is disabled and challenge validation is performed.
To have all challenge POST requests succeed without performing any validation run:
PEBBLE_VA_ALWAYS_VALID=1 pebble
The urn:ietf:params:acme:error:badNonce
error type is meant to be retry-able.
When receiving this error a client should make a subsequent request to the
/new-nonce
endpoint (or use the nonce from the error response) to retry the
failed request, rather than quitting outright.
Experience from Boulder indicates that many ACME clients do not gracefully retry on invalid nonce errors. To help ensure future ACME clients are able to gracefully handle these errors by default Pebble rejects 5% of all valid nonces as invalid.
The percentage of valid nonces that are rejected can be configured using the
environment variable PEBBLE_WFE_NONCEREJECT
. E.g. to reject 90% of good nonces
as invalid instead of 15% run:
PEBBLE_WFE_NONCEREJECT=90 pebble
To never reject a valid nonce as invalid run:
PEBBLE_WFE_NONCEREJECT=0 pebble
The RFC allows for several objects to be re-used.
Clients should be prepared an ACME server may re-use any given object type, regardless of Pebble implementing a reuse policy for that object.
Pebble and Boulder may or may not implement the same object re-use policies at any given time. There exists an ACME Implementation Details document for Boulder which contains some information on how Boulder handles this.
The RFC allows ACME servers to reuse an Order. Pebble does not reuse Orders at this time; however Boulder does reuse Orders in at least one scenario:
- If an Account requests a new Order that is identical to an already existing "pending" or "ready" Order for that same Account, the Order will be re-used.
ACME servers may choose to reuse authorizations from previous orders in new orders. ACME clients should always check the status of a new order and its authorizations to confirm whether they need to respond to any challenges.
Pebble will reuse valid authorizations in new orders, if they exist, 50% of the time.
The percentage may be controlled with the environment variable PEBBLE_AUTHZREUSE
, e.g. to always reuse authorizations:
PEBBLE_AUTHZREUSE=100 pebble
Pebble does not currently reuse Pending Authorizations across Orders, however other ACME servers - notably Boulder - will reuse Pending Authorizations.
Pebble is accessible over HTTPS only and uses a test
certificate generated using a test
CA (See the test/certs/
directory for more information).
Since the Pebble test CA isn't part of any default CA trust stores you must add
the test/certs/pebble.minica.pem
certificate
to your client's trusted root configuration to avoid HTTPS errors. Your client
should offer a runtime option to specify a list of trusted root CAs.
IMPORTANT: Do not add the pebble.minica.pem
CA to the system-wide trust
store or to any production systems/codebases. The private key for this CA is
intentionally made publicly available in this
repo.
In order to ease the interaction of Pebble with testing systems, a specific HTTP management interface is exposed on a different port than the ACME protocol, and offers several useful testing endpoints.
These endpoints are specific to Pebble and its internal behavior, and are not part of the RFC 8555 that defines the ACME protocol.
The management interface is configured by the managementListenAddress
field in
pebble-config.json
that defines the address and the port on which the management
interface will listen on. Set managementListenAddress
to an empty string or null
to disable it.
The default configuration for this management interface as defined in
test/config/pebble-config.json
is to listen on any address on port 15000:
"managementListenAddress": "0.0.0.0:15000",
Note that the CA's root and intermediate certificates are regenerated on every
launch. They can be retrieved by a GET
request to https://localhost:15000/roots/0
and https://localhost:15000/intermediates/0
respectively.
You might need the root certificate to verify the complete trust chain of generated certificates, for example in end-to-end tests.
The private keys of these certificates can also be retrieved by a GET
request
to https://localhost:15000/root-keys/0
and https://localhost:15000/intermediate-keys/0
respectively.
IMPORTANT: Do not add Pebble's root or intermediate certificate to a trust store that you use for ordinary browsing or that is used for non-testing purposes, since Pebble and its generated keys are not audited or held to the same standards as the Let's Encrypt production CA and their keys. Moreover these keys are exposed by Pebble and will be lost as soon as the process terminates: so they are not safe to use for anything other than testing.
In case alternative root chains are enabled by setting PEBBLE_ALTERNATE_ROOTS
to a
positive integer, the root certificates for these can be retrieved by doing a GET
request to https://localhost:15000/roots/0
, https://localhost:15000/root-keys/1
https://localhost:15000/intermediates/2
, https://localhost:15000/intermediate-keys/3
etc. These endpoints also send Link
HTTP headers for all alternative root and
intermediate certificates and keys.
The length of certificate chains can be controlled using PEBBLE_CHAIN_LENGTH
, which has
a default and minimum value of 1
(leaf + 1 intermediate). For higher values, Pebble will
include extra intermediate certificates between the leaf and the root. Extra intermediate
certificates are not exposed via the management interface.
The certificate (in PEM format) and its revocation status can be queried by sending
a GET
request to https://localhost:15000/cert-status-by-serial/<serial>
, where
<serial>
is the hexadecimal representation of the certificate's serial number (no 0x
prefix).
It can be obtained via:
openssl x509 -in cert.pem -noout -serial | cut -d= -f2
The endpoint returns the information as a JSON object:
$ curl -ki https://127.0.0.1:15000/cert-status-by-serial/66317d2e02f5d3d6
HTTP/2 200
cache-control: public, max-age=0, no-cache
content-type: application/json; charset=utf-8
link: <https://127.0.0.1:15000/dir>;rel="index"
content-length: 1740
date: Fri, 12 Jul 2019 22:14:21 GMT
{
"Certificate": "-----BEGIN CERTIFICATE-----\nMIIEVz...tcw=\n-----END CERTIFICATE-----\n",
"Reason": 4,
"RevokedAt": "2019-07-13T00:13:20.418489956+02:00",
"Serial": "66317d2e02f5d3d6",
"Status": "Revoked"
}
Pebble does not support the OCSP protocol as a responder and so does not set
the OCSP Responder URL in the issued certificates. However, if you setup a
proper OCSP Responder run side by side with Pebble, you may want to set this URL.
This is possible by setting the field ocspResponderURL
of the pebble-config.json
consummed by Pebble to a non empty string: in this case, this string will be use
in the appropriate field of all issued certificates.
For instance, to have Pebble issue certificates that instruct a client to check the URL http://127.0.0.1:4002
to retrieve the OCSP status of a certificate, run Pebble with a pebble-config.json
that includes:
"ocspResponderURL": "http://127.0.0.1:4002",
Pebble has support for enumerating all orders for an ACME account object according to
RFC 8555, Section 7.1.2. By default, three
orders are returned per page, to make it easy to test pagination. This number can be modified by
setting the PEBBLE_WFE_ORDERS_PER_PAGE
environment variable to a positive integer. For example,
to have 15 orders per page, run
PEBBLE_WFE_ORDERS_PER_PAGE=15 pebble