Skip to content

[TMI'20] Code for "Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-Cortical Brain Structure Segmentation".

Notifications You must be signed in to change notification settings

lihaoliu-cambridge/psi-net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-Cortical Brain Structure Segmentation

by Lihao Liu, Xiaowei Hu, Lei Zhu, Chi-Wing Fu, Jing Qin and Pheng-Ann Heng.

Introduction

In this repository, we provide the Tensorflow and DLTK implementation for our TMI paper Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-Cortical Brain Structure Segmentation.

Requirement

tensorflow-gpu 1.14.0
dltk 0.2.1
cuda 10.0
cudnn 7.5

Usage

  1. Clone the repository:

    git clone https://github.com/lihaoliu-cambridge/psi-net.git
    cd psi-net
  2. Download the IBSR dataset:

    IBSR_V2.0_nifti_stripped.tgz

  3. Unzip them in folder dataset/IBSR:

    dataset/IBSR/IBSR_nifti_stripped

  4. Pre-process the LPBA40 dataset:

    cd script
    python preprocessing_ibsr.py

    output results:

    dataset/IBSR_preprocessed/IBSR_nifti_stripped

  5. Train the model:

    cd ..
    python train_ibsr.py
  6. Test the saved model:

    python test_ibsr.py 

Note

  1. If you are using a virtual environment, please reload cuda and cudnn before running, so you can use gpu during training. You can also add the cuda and cudnn path to your system path:

    source ~/tensorflow-env/bin/activate
    module load cuda/10.0 cudnn/7.5_cuda-10.0
  2. Use pip to install Tensorflow and DLTK directly:

    pip install tensorflow-gpu==1.14.0
    pip install dltk
  3. In our TMI paper, we use Whiten normalization to standardize data distributions. To better standardize data distributions and facilitate training, we try another normalization approach Histogram Standardization. The results are shown in the below picture:

Citation

If you use our code for your research, please cite our paper:

@article{liu2020psi,
  title={$\psi$-Net: Stacking Densely Convolutional LSTMs for Sub-cortical Brain Structure Segmentation},
  author={Liu, Lihao and Hu, Xiaowei and Zhu, Lei and Fu, Chi-Wing and Qin, Jing and Heng, Pheng-Ann},
  journal={IEEE Transactions on Medical Imaging},
  year={2020},
  publisher={IEEE}
}

Question

Please open an issue or email [email protected] for any questions.

About

[TMI'20] Code for "Ψ-Net: Stacking Densely Convolutional LSTMs for Sub-Cortical Brain Structure Segmentation".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages