Skip to content

Commit

Permalink
Added published COVIDNet CXR-S severity assessment paper for reference
Browse files Browse the repository at this point in the history
  • Loading branch information
mayaliliya committed Dec 29, 2021
1 parent 411d462 commit 36a02d1
Show file tree
Hide file tree
Showing 2 changed files with 8 additions and 2 deletions.
3 changes: 2 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,8 @@ The COVID-19 pandemic continues to have a devastating effect on the health and w

For a detailed description of the methodology behind COVID-Net and a full description of the COVIDx dataset, please click [here](https://www.nature.com/articles/s41598-020-76550-z).

For a detailed description of the methodology behind COVID-Net based deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity, please click [here](https://arxiv.org/abs/2005.12855).
For a detailed description of the methodology behind COVIDNet CXR-S severity assessment, please click [here](https://www.mdpi.com/2075-4418/12/1/25). \
For more information on COVIDNet-S deep neural networks for geographic extent and opacity extent scoring of chest X-rays for SARS-CoV-2 lung disease severity, please click [here](https://arxiv.org/abs/2005.12855).

For a detailed description of the methodology behind COVIDNet-CT and the associated dataset of 104,009 CT images from 1,489 patients, please click [here](https://github.com/haydengunraj/COVIDNet-CT).

Expand Down
7 changes: 6 additions & 1 deletion docs/covidnet_severity.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
# COVIDNet CXR-S Air Space Severity Grading
COVDNet CXR-S model takes as input a chest x-ray image of shape (N, 480, 480, 3). where N is the number of batches,
COVIDNet CXR-S model takes as input a chest x-ray image of shape (N, 480, 480, 3). where N is the number of batches,
and outputs the airspace severity of a SARS-CoV-2 positive patient. The airspace severity is grouped into two levels: 1) Level 1: opacities in 1-2 lung zones, and 2) Level 2: opacities in 3 or more lung zones.

For a detailed description on the methodology behind COVIDNet CXR-S, please click [here](https://www.mdpi.com/2075-4418/12/1/25).

If using the TF checkpoints, here are some useful tensors:

* input tensor: `input_1:0`
Expand All @@ -26,6 +28,7 @@ python train_tf.py \
--datadir data_sev \
--trainfile labels/train_COVIDxSev.txt \
--testfile labels/test_COVIDxSev.txt \
--in_tensorname input_1:0 \
--out_tensorname norm_dense_2/Softmax:0 \
--logit_tensorname norm_dense_2/MatMul:0 \
--is_severity_model
Expand All @@ -45,6 +48,7 @@ python eval.py \
--n_classes 2 \
--testfolder data_sev/test \
--testfile labels/test_COVIDxSev.txt \
--in_tensorname input_1:0 \
--out_tensorname norm_dense_2/Softmax:0 \
--is_severity_model
```
Expand All @@ -63,6 +67,7 @@ python inference.py \
--ckptname model \
--n_classes 2 \
--imagepath assets/ex-covid.jpeg \
--in_tensorname input_1:0 \
--out_tensorname norm_dense_2/Softmax:0 \
--is_severity_model
```
Expand Down

0 comments on commit 36a02d1

Please sign in to comment.