Skip to content

Latest commit

 

History

History
63 lines (43 loc) · 3.17 KB

README.md

File metadata and controls

63 lines (43 loc) · 3.17 KB

GPT2 for Multiple Languages

Open In Colab GitHub GitHub All Releases contributions welcome GitHub stars

中文说明 | English

  • Simplifed GPT2 train scripts(based on Grover, supporting TPUs)
  • Ported bert tokenizer, multilingual corpus compatible
  • 1.5B GPT2 pretrained Chinese model ( ~15G corpus, 10w steps )
  • Batteries-included Colab demo #
  • 1.5B GPT2 pretrained Chinese model ( ~30G corpus, 22w steps )

Pretrained Model

Size Language Corpus Vocab Link SHA256
1.5B parameters Chinese ~30G CLUE ( 8021 tokens ) Google Drive e698cc97a7f5f706f84f58bb469d614e
51d3c0ce5f9ab9bf77e01e3fcb41d482
1.5B parameters Chinese ~15G Bert ( 21128 tokens ) Google Drive 4a6e5124df8db7ac2bdd902e6191b807
a6983a7f5d09fb10ce011f9a073b183e

Corpus from THUCNews and nlp_chinese_corpus

Using Cloud TPU Pod v3-256 to train 22w steps

loss

Google Colab

With just 2 clicks (not including Colab auth process), the 1.5B pretrained Chinese model demo is ready to go:

[Colab Notebook]

Train

Disclaimer

The contents in this repository are for academic research purpose, and we do not provide any conclusive remarks.

Citation

@misc{GPT2-ML,
  author = {Zhibo Zhang},
  title = {GPT2-ML: GPT-2 for Multiple Languages},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/imcaspar/gpt2-ml}},
}

Reference

https://github.com/google-research/bert

https://github.com/rowanz/grover

Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC)