-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
82a887d
commit 80b5e04
Showing
1 changed file
with
115 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
import numpy as np | ||
import pytest | ||
from scipy.constants import mu_0 | ||
from scipy.constants import speed_of_light as C | ||
|
||
from lumicks.pyoptics.field_distributions.dipole import ( | ||
emitted_power_magnetic_dipole, | ||
magnetic_dipole, | ||
magnetic_dipole_z, | ||
) | ||
from lumicks.pyoptics.mathutils.integration import get_integration_locations, get_nearest_order | ||
from lumicks.pyoptics.mathutils.vector import outer_product | ||
|
||
|
||
def scale_coords(coords_list, radius: float): | ||
return [ax * radius for ax in coords_list] | ||
|
||
|
||
def emitted_power_kong_magnetic(m, n_medium, lambda_vac): | ||
"""Independent implementation of emitted power by a magnetic dipole, see [1]. | ||
.. [1] Electromagnetic Wave Theory, Jin Au Kong, Ch. 4 | ||
""" | ||
k = 2 * np.pi * n_medium / lambda_vac | ||
# k**4 * C * mu_0 * m**2 / (12 * np.pi * n_medium), rewritten to: | ||
return 4 * mu_0 * m**2 * np.pi**3 * n_medium**3 * C * lambda_vac**-4 / 3.0 | ||
|
||
|
||
def poynting(n, Ex, Ey, Ez, Hx, Hy, Hz): | ||
S = np.asarray( | ||
[ | ||
s * nn | ||
for s, nn in zip(outer_product([Ex, Ey, Ez], [np.conj(H) for H in [Hx, Hy, Hz]]), n) | ||
] | ||
) | ||
return S | ||
|
||
|
||
def integrated_emitted_power(radius, w, normal, fields1): | ||
S = poynting(normal, *fields1) | ||
power = 0.5 * 4 * np.pi * radius**2 * (w * S.real).sum() | ||
return power | ||
|
||
|
||
@pytest.mark.parametrize("m", [2.2, np.pi, np.exp(-1)]) | ||
@pytest.mark.parametrize("lambda_vac", [1064e-9, 600e-9]) | ||
@pytest.mark.parametrize("n_medium", [1.0, 1.33, 1.51]) | ||
def test_powers(m, lambda_vac, n_medium): | ||
"""Test that the analytical expression for emitted power by a magnetic dipole matches an | ||
independent implementation""" | ||
assert emitted_power_magnetic_dipole(m, n_medium, lambda_vac) == pytest.approx( | ||
emitted_power_kong_magnetic(m, n_medium, lambda_vac) | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("order", [3, 15, 31]) | ||
@pytest.mark.parametrize("n_medium", [1.0, 1.33, 1.51]) | ||
@pytest.mark.parametrize("radius", [300e-9, 4e-6, 5.0]) | ||
def test_magnetic_dipole_z(order: int, n_medium: float, radius: float): | ||
"""Test implementation from [1] against independent and an implementation from [2] that supports | ||
other media than vacuum by applying the duality principle to the solutions for electric dipoles | ||
listed in both sources. Checks fields and emitted powers. | ||
.. [1] Principles of Nano-optics, 2nd Ed., Ch. 8 + application of 10.53 | ||
.. [2] Classical Electrodynamics, Ch. 9, 3rd Edition, J.D. Jackson | ||
""" | ||
lambda_vac = 1064e-9 | ||
mz = 3.3 | ||
x, y, z, w = get_integration_locations(get_nearest_order(order), "lebedev-laikov") | ||
n = [x, y, z] | ||
x, y, z = scale_coords((x, y, z), radius) | ||
fields1 = magnetic_dipole([0.0, 0.0, mz], n_medium, lambda_vac, x, y, z, farfield=False) | ||
fields2 = magnetic_dipole_z(mz, n_medium, lambda_vac, x, y, z) | ||
np.testing.assert_allclose(fields1, fields2) | ||
|
||
ref_power = emitted_power_magnetic_dipole(mz, n_medium, lambda_vac) | ||
power = integrated_emitted_power(radius, w, n, fields1) | ||
assert power == pytest.approx(ref_power) | ||
|
||
|
||
@pytest.mark.parametrize("order", [3, 15, 31]) | ||
@pytest.mark.parametrize("n_medium", [1.28, 1.33, 1.51]) | ||
@pytest.mark.parametrize("radius", [300e-9, 4e-6, 5.0]) | ||
def test_magnetic_dipole(order: int, n_medium: float, radius: float): | ||
"""Test implementation from [2] that supports | ||
other media than vacuum by applying the duality principle, and verify that the fields are | ||
invariant under rotation of the dipole axis (x, y, z). Checks fields and emitted powers. | ||
.. [1] Principles of Nano-optics, 2nd Ed., Ch. 8 + application of 10.53 | ||
.. [2] Classical Electrodynamics, Ch. 9, 3rd Edition, J.D. Jackson | ||
""" | ||
lambda_vac = 1064e-9 | ||
mz = 3.3 | ||
x, y, z, w = get_integration_locations(get_nearest_order(order), "lebedev-laikov") | ||
n = (x, y, z) | ||
x, y, z = scale_coords((x, y, z), radius) | ||
# dipole in z is benchmarked above, use result to benchmark dipole in x- and y-direction | ||
# Check x-dipole | ||
Ez, Ey, Ex, Hz, Hy, Hx = magnetic_dipole([0.0, 0.0, mz], n_medium, lambda_vac, -z, y, x) | ||
reference = [Ex, Ey, -Ez, Hx, Hy, -Hz] | ||
fields_under_test = magnetic_dipole([mz, 0.0, 0.0], n_medium, lambda_vac, x, y, z) | ||
np.testing.assert_allclose(reference, fields_under_test) | ||
|
||
ref_power = emitted_power_magnetic_dipole(mz, n_medium, lambda_vac) | ||
power = integrated_emitted_power(radius, w, n, fields_under_test) | ||
assert power == pytest.approx(ref_power) | ||
|
||
# Check y-dipole | ||
Ex, Ez, Ey, Hx, Hz, Hy = magnetic_dipole([0.0, 0.0, mz], n_medium, lambda_vac, x, -z, y) | ||
reference = [Ex, Ey, -Ez, Hx, Hy, -Hz] | ||
fields_under_test = magnetic_dipole([0.0, mz, 0.0], n_medium, lambda_vac, x, y, z) | ||
np.testing.assert_allclose(reference, fields_under_test) | ||
|
||
power = integrated_emitted_power(radius, w, n, fields_under_test) | ||
assert power == pytest.approx(ref_power) |