Skip to content

lzhelin/CrystalDiffusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CrystalDiffusion

The maintenance of this project is handled within the following repository: https://github.com/PhysiLearn/CrystalDiffusion

Environment

You can run !pip install -r requirement.txt to install packages required.

Usage

npz2cloud.pyand npz2cloud.py in PCCD/preprocess is for data preprocessing.

run python train.py to train PCCD.

If you want use PCCD, you can run:

python train.py

You can also use it as follows:

from PCCD.Unet import Unet
from PCCD.DDPM import GaussianDiffusion
import torch
from PCCD.process import *
import numpy as np


sh = 1
image_classes = torch.Tensor([5]).to(torch.long).cuda()

iss0 = torch.Tensor().to(torch.long).cuda()
elem = torch.Tensor([[m['Ca'],m['Mg'],m['O']]]).to(torch.long).cuda()
el = ['Ca','Mg','O']

ee = torch.Tensor([1]).to(torch.long).cuda()


sampled_images = diffusion.sample(
    classes=image_classes,
    e=ee,
    iss=iss0,
    cond_scale=3.
)

data = sampled_images.to('cpu').detach().numpy()
process('./', sh, data, el)

Citation

@misc{denoising-diffusion-pytorch ,
    author  = {lucidrains},
    url     = {https://github.com/lucidrains/denoising-diffusion-pytorch}
}

@ARTICLE{2024arXiv240113192L,
       author = {{Li}, Zhelin and {Mrad}, Rami and {Jiao}, Runxian and {Huang}, Guan and {Shan}, Jun and {Chu}, Shibing and {Chen}, Yuanping},
        title = "{Generative Design of Crystal Structures by Point Cloud Representations and Diffusion Model}",
      journal = {arXiv e-prints},
     keywords = {Computer Science - Artificial Intelligence, Condensed Matter - Materials Science, Computer Science - Machine Learning, Physics - Computational Physics},
         year = 2024,
        month = jan,
          eid = {arXiv:2401.13192},
        pages = {arXiv:2401.13192},
          doi = {10.48550/arXiv.2401.13192},
archivePrefix = {arXiv},
       eprint = {2401.13192},
 primaryClass = {cs.AI},
       adsurl = {https://ui.adsabs.harvard.edu/abs/2024arXiv240113192L},
      adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages