-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
175 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
"""" | ||
Example script for images with stacks of channel per image | ||
Please adapt accordingly | ||
""" | ||
|
||
import os | ||
import sys | ||
from glob import glob | ||
import numpy as np | ||
from src.file_specs import FileSpecifics | ||
import src.ImagePreprocessFilters as IPrep | ||
import src.ImageParser as IP | ||
|
||
def preprocess_image(img, thresholds, percentiles): | ||
filtered_img = np.empty(img.shape) | ||
for ch in range(img.shape[2]): | ||
img_ch = img[:, :, ch] | ||
|
||
# Thresholding | ||
th = thresholds[ch] | ||
if th is not None: | ||
img_ch = np.where(img_ch >= th, img_ch, 0) | ||
|
||
# Percentile filtering | ||
perc = percentiles[ch] | ||
if perc is not None: | ||
img_ch = img_ch[..., np.newaxis] | ||
img_ch = IPrep.percentile_filter(img_ch, window_size=3, percentile=perc, transf_bool=True) | ||
img_ch = img_ch.squeeze() | ||
|
||
filtered_img[:, :, ch] = img_ch | ||
return filtered_img | ||
|
||
|
||
if __name__ == "__main__": | ||
folder_path = 'data_test/all_ch/METABRIC22_sample/' | ||
# folder_path = 'data_test/all_ch/stacks_with_names/' | ||
path_for_results = 'results_percentile/' | ||
|
||
# normalization outliers | ||
up_limit = 99 | ||
down_limit = 1 | ||
binary_masks = False | ||
|
||
# Load files | ||
files = glob(os.path.join(folder_path, '*.tiff')) | ||
num_images = len(files) | ||
print(f"Number of images identified: {num_images}") | ||
if num_images == 0: | ||
sys.exit(1) | ||
|
||
# Parse image channels | ||
specs = FileSpecifics(files[0], multitiff=True) | ||
channel_names = specs.channel_names | ||
print('Channel names: ', channel_names) | ||
num_channels = len(channel_names) | ||
|
||
# Calculate thresholds and percentiles | ||
thresholds = [0.1 for _ in range(num_channels) ] | ||
percentiles = [0.5 for _ in range(num_channels)] | ||
|
||
images_original = list(map(IP.parse_image_pages, files)) | ||
|
||
# Preprocessing | ||
imgs_out = map(lambda p: IPrep.remove_outliers(p, up_limit, down_limit), images_original) | ||
imgs_norm = map(IPrep.normalize_channel_cv2_minmax, imgs_out) | ||
filtered_images = map(lambda i: preprocess_image(i, thresholds, percentiles), imgs_norm) | ||
imgs_filtered = list(filtered_images) | ||
|
||
# Apply binary masks if needed | ||
if binary_masks: | ||
imgs_filtered = [np.where(a > 0, 1, 0) for a in imgs_filtered] | ||
|
||
# Save images | ||
names_save = [os.path.join(path_for_results, os.path.basename(sub)) for sub in files] | ||
images_final = map(lambda p, f: IPrep.save_images(p, f, ch_last=True), imgs_filtered, names_save) | ||
print(f'Images saved at {path_for_results}') | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,97 @@ | ||
"""" | ||
Example script for images with one channel in each file | ||
Please adapt accordingly | ||
""" | ||
|
||
import os | ||
import sys | ||
from glob import glob | ||
import numpy as np | ||
from src.file_specs import FileSpecifics | ||
import src.ImagePreprocessFilters as IPrep | ||
import src.ImageParser as IP | ||
|
||
|
||
def preprocess_image(file_paths, path_for_results, up_limit=99, down_limit=1, threshold=None, percentile=50, | ||
binary_masks=False): | ||
images_original = list(map(IP.parse_image, file_paths)) | ||
|
||
if len(images_original[0].shape) == 2: # Check if the shape is 2D | ||
images_original = [np.expand_dims(img, axis=-1) for img in images_original] | ||
|
||
# PERCENTILE SATURATION OUTLIERS | ||
imgs_out = map(lambda p: IPrep.remove_outliers(p, up_limit, down_limit), images_original) | ||
|
||
# NORMALIZE PER CHANNEL with function from OpenCV | ||
imgs_norm = map(IPrep.normalize_channel_cv2_minmax, imgs_out) | ||
|
||
# THRESHOLDING | ||
if isinstance(threshold, float): | ||
imgs_filtered = list(map(lambda p: IPrep.out_ratio2(p, th=threshold), imgs_norm)) | ||
elif threshold is None: | ||
imgs_filtered = imgs_norm | ||
elif threshold in ['otsu', 'isodata', 'Li', 'Yen', 'triangle', 'mean']: | ||
threshold_fn = getattr(IPrep, f'th_{threshold}') | ||
imgs_filtered = list(map(threshold_fn, imgs_norm)) | ||
elif threshold == 'local': | ||
imgs_filtered = list(map(lambda p: IPrep.th_local(p, block_size=3, method='gaussian'), imgs_norm)) | ||
else: | ||
raise ValueError(f"Invalid threshold type: {threshold}") | ||
|
||
if percentile is not None: | ||
imgs_filtered = map( | ||
lambda p: IPrep.percentile_filter(p, window_size=3, percentile=percentile, transf_bool=True), | ||
imgs_filtered) | ||
imgs_filtered = list(imgs_filtered) | ||
|
||
if binary_masks: | ||
imgs_filtered = [np.where(a > 0, 1, 0) for a in imgs_filtered] | ||
|
||
names_save = [os.path.join(path_for_results, os.path.basename(os.path.dirname(sub)), os.path.basename(sub)) for | ||
sub in file_paths] | ||
map(lambda p, f: IPrep.save_images(p, f, ch_last=True), imgs_filtered, names_save) | ||
print('Images saved at ', path_for_results) | ||
|
||
|
||
if __name__ == "__main__": | ||
folder_path = 'data_test/one_ch/' | ||
path_for_results = 'results_percentile/' | ||
|
||
# normalization outliers | ||
up_limit = 99 | ||
down_limit = 1 | ||
|
||
# Thresholding | ||
threshold = None | ||
percentile = 50 | ||
binary_masks = False | ||
|
||
# load files | ||
files = [y for x in os.walk(folder_path) for y in glob(os.path.join(x[0], '*.ome.tiff'))] | ||
num_images = len(files) | ||
print(f"Number of images identified: {num_images}") | ||
if num_images == 0: | ||
sys.exit(1) | ||
|
||
channel_names = set([name.split("_")[-1].split(".ome.tiff")[0] for name in files]) | ||
|
||
# for channel in channel_names: | ||
# files_channel = [file for file in files if str(channel + '.ome.tiff') in str(file)] | ||
# | ||
# paths_save = [str(path_for_results + os.path.basename(os.path.dirname(sub))) for sub in files_channel] | ||
# | ||
# preprocess_image(files_channel, path_for_results, up_limit, down_limit, threshold, percentile, binary_masks) | ||
# print(f'Channel: {channel}, Percentile: {percentile}, thresholding: {threshold}') | ||
|
||
channel_names = ['CD45', 'CD68','CD31','Bcatenin', 'Vimentin'] | ||
thresholds = [0.1,None, 0.1,0.1, None] | ||
percentiles = [0.5,0.5,0.5,0.5,0.5] | ||
|
||
for channel, th, perc in zip(channel_names, thresholds, percentiles): | ||
files_channel = [file for file in files if str(channel + '.ome.tiff') in str(file)] | ||
|
||
paths_save = [str(path_for_results + os.path.basename(os.path.dirname(sub))) for sub in files_channel] | ||
|
||
preprocess_image(files_channel, path_for_results, up_limit, down_limit, th, perc, binary_masks) | ||
print(f'Channel: {channel}, Percentile: {perc}, Thresholding: {th}') | ||
|