Skip to content

mfkimbell/ai-rag-pdf

Repository files navigation

ai-rag-pdf

Architechture

rag_arch

Demo

demo-ezgif com-speed

Tools Used

  • PyPDFLoader - Lanchain library for loading pdf data
  • FAISS - Vector Storage and simliarity search through Langchain
  • Titan Text v1 - Creating text embeddings
  • Bedrock - LangChain module for integrating with AWS Bedrock for LLM interactions.
  • Streamlit - Framework for building interactive web applications (particularly in data science)
  • Docker - Containerization platform used for running the application locally.
  • Claude-v2 - Large language model used

Imporant to note

  • Chunking size mattered a lot here, apparenlty 300-500 is recommended for resumes to give it more context

Local Testing

To test the application locally, follow these steps:

  1. Clone the repo:
git clone https://github.com/mfkimbell/ai-rag-hr.git
  1. Pull the Docker Image:

    docker pull mfkimbell/ai-rag-doc:latest
  2. Run the Docker Container:

    docker run --env-file .env -p 8501:8501 mfkimbell/ai-rag-doc:latest

    Ensure that you have a .env file with the necessary environment variables.

AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY AWS_DEFAULT_REGION

  1. Access Webapp

    http://0.0.0.0:8501/ or http://localhost:8501/

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published