
PyPDFLoader
- Lanchain library for loading pdf dataFAISS
- Vector Storage and simliarity search through LangchainTitan Text v1
- Creating text embeddingsBedrock
- LangChain module for integrating with AWS Bedrock for LLM interactions.Streamlit
- Framework for building interactive web applications (particularly in data science)Docker
- Containerization platform used for running the application locally.Claude-v2
- Large language model used
- Chunking size mattered a lot here, apparenlty 300-500 is recommended for resumes to give it more context
To test the application locally, follow these steps:
- Clone the repo:
git clone https://github.com/mfkimbell/ai-rag-hr.git
-
Pull the Docker Image:
docker pull mfkimbell/ai-rag-doc:latest
-
Run the Docker Container:
docker run --env-file .env -p 8501:8501 mfkimbell/ai-rag-doc:latest
Ensure that you have a
.env
file with the necessary environment variables.
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_DEFAULT_REGION
-
Access Webapp
http://0.0.0.0:8501/
orhttp://localhost:8501/