Skip to content

Commit

Permalink
add minicpm3 model and dynmaic inference demo (#1870)
Browse files Browse the repository at this point in the history
  • Loading branch information
xing-yiren authored Dec 19, 2024
1 parent 0fb2d1c commit 0ac2d93
Show file tree
Hide file tree
Showing 10 changed files with 1,778 additions and 0 deletions.
28 changes: 28 additions & 0 deletions llm/inference/minicpm3/simple_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
import mindspore
from mindnlp.transformers import MiniCPM3Tokenizer, MiniCPM3Config, MiniCPM3ForCausalLM
from mindnlp.core import ops


model_id = "OpenBMB/MiniCPM3-4B"
tokenizer = MiniCPM3Tokenizer.from_pretrained(model_id, mirror="modelscope")
model = MiniCPM3ForCausalLM.from_pretrained(model_id, ms_dtype=mindspore.float16, mirror="modelscope")


messages = [
{"role": "user", "content": "推荐5个北京的景点。"},
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="ms", add_generation_prompt=True)

model_outputs = model.generate(
model_inputs,
max_new_tokens=1024,
top_p=0.7,
temperature=0.7
)

output_token_ids = [
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs))
]

responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0]
print(responses)
3 changes: 3 additions & 0 deletions mindnlp/transformers/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,7 @@
megatron_bert,
mgp_str,
minicpm,
minicpm3,
mistral,
mixtral,
mobilebert,
Expand Down Expand Up @@ -390,6 +391,7 @@
from .megatron_bert import *
from .mgp_str import *
from .minicpm import *
from .minicpm3 import *
from .mistral import *
from .mixtral import *
from .mobilebert import *
Expand Down Expand Up @@ -634,6 +636,7 @@
__all__.extend(megatron_bert.__all__)
__all__.extend(mgp_str.__all__)
__all__.extend(minicpm.__all__)
__all__.extend(minicpm3.__all__)
__all__.extend(mistral.__all__)
__all__.extend(mixtral.__all__)
__all__.extend(mllama.__all__)
Expand Down
3 changes: 3 additions & 0 deletions mindnlp/transformers/models/auto/configuration_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,7 @@
("mctct", "MCTCTConfig"),
("megatron-bert", 'MegatronBertConfig'),
("minicpm", "MiniCPMConfig"),
("minicpm3", "MiniCPM3Config"),
("mistral", "MistralConfig"),
("mixtral", "MixtralConfig"),
("mllama", "MllamaConfig"),
Expand Down Expand Up @@ -360,6 +361,7 @@
("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("minicpm3", "MINICPM3_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"),
("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"),
Expand Down Expand Up @@ -619,6 +621,7 @@
("megatron_gpt2", "Megatron-GPT2"),
("mgp-str", "MGP-STR"),
("minicpm", "MiniCPM"),
("minicpm3", "MiniCPM3"),
("mistral", "Mistral"),
("mixtral", "Mixtral"),
("mllama", "Mllama"),
Expand Down
5 changes: 5 additions & 0 deletions mindnlp/transformers/models/auto/modeling_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,7 @@
("megatron-bert", "MegatronBertModel"),
("mgp-str", "MgpstrForSceneTextRecognition"),
('minicpm', 'MiniCPMModel'),
("minicpm3", "MiniCPM3Model"),
("mistral", "MistralModel"),
("mixtral", "MixtralModel"),
("mobilebert", "MobileBertModel"),
Expand Down Expand Up @@ -320,6 +321,7 @@
("mega", "MegaForMaskedLM"),
("megatron-bert", "MegatronBertForPreTraining"),
('minicpm', 'MiniCPMForCausalLM'),
('minicpm3', 'MiniCPM3ForCausalLM'),
("mllama", "MllamaForConditionalGeneration"),
("mobilebert", "MobileBertForPreTraining"),
("mpnet", "MPNetForMaskedLM"),
Expand Down Expand Up @@ -407,6 +409,7 @@
("mega", "MegaForMaskedLM"),
("megatron-bert", "MegatronBertForCausalLM"),
('minicpm', 'MiniCPMForCausalLM'),
('minicpm3', 'MiniCPM3ForCausalLM'),
("mobilebert", "MobileBertForMaskedLM"),
("mpnet", "MPNetForMaskedLM"),
("mpt", "MptForCausalLM"),
Expand Down Expand Up @@ -493,6 +496,7 @@
("mega", "MegaForCausalLM"),
("megatron-bert", "MegatronBertForCausalLM"),
('minicpm', 'MiniCPMForCausalLM'),
('minicpm3', 'MiniCPM3ForCausalLM'),
("mistral", "MistralForCausalLM"),
("mixtral", "MixtralForCausalLM"),
("mllama", "MllamaForCausalLM"),
Expand Down Expand Up @@ -943,6 +947,7 @@
("mega", "MegaForSequenceClassification"),
("megatron-bert", "MegatronBertForSequenceClassification"),
('minicpm', 'MiniCPMForSequenceClassification'),
('minicpm3', 'MiniCPM3ForSequenceClassification'),
("mistral", "MistralForSequenceClassification"),
("mixtral", "MixtralForSequenceClassification"),
("mobilebert", "MobileBertForSequenceClassification"),
Expand Down
1 change: 1 addition & 0 deletions mindnlp/transformers/models/auto/tokenization_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -287,6 +287,7 @@
("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)),
("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)),
("mgp-str", ("MgpstrTokenizer", None)),
("minicpm3", ("MiniCPMTokenizer", None)),
(
"mistral",
(
Expand Down
26 changes: 26 additions & 0 deletions mindnlp/transformers/models/minicpm3/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
MiniCPM3 Model.
"""
from . import modeling_minicpm3, configuration_minicpm3, tokenization_minicpm3
from .modeling_minicpm3 import *
from .configuration_minicpm3 import *
from .tokenization_minicpm3 import *

__all__ = []
__all__.extend(modeling_minicpm3.__all__)
__all__.extend(configuration_minicpm3.__all__)
__all__.extend(tokenization_minicpm3.__all__)
185 changes: 185 additions & 0 deletions mindnlp/transformers/models/minicpm3/configuration_minicpm3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MiniCPM model configuration"""

from mindnlp.utils import logging
from ...configuration_utils import PretrainedConfig


logger = logging.get_logger(__name__)

MINICPM3_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class MiniCPM3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MiniCPM-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MiniCPMModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
```python
>>> from transformers import MiniCPMModel, MiniCPMConfig
>>> # Initializing a MiniCPM minicpm-7b style configuration
>>> configuration = MiniCPMConfig()
>>> # Initializing a model from the minicpm-7b style configuration
>>> model = MiniCPMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""

model_type = "minicpm3"
keys_to_ignore_at_inference = ["past_key_values"]

def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
qk_nope_head_dim=64,
qk_rope_head_dim=32,
q_lora_rank=768,
kv_lora_rank=256,
v_head_dim=None,
head_dim=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
scale_emb=1,
dim_model_base=1,
scale_depth=1,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank

if v_head_dim is None:
v_head_dim = qk_nope_head_dim
self.v_head_dim = v_head_dim

# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads

self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.scale_emb = scale_emb
self.dim_model_base = dim_model_base
self.scale_depth = scale_depth
self.head_dim = self.qk_nope_head_dim + self.qk_rope_head_dim

super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

__all__ = ["MiniCPM3Config"]
Loading

0 comments on commit 0ac2d93

Please sign in to comment.