-
Notifications
You must be signed in to change notification settings - Fork 243
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: FM <[email protected]>
- Loading branch information
Showing
6 changed files
with
1,516 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
# Copyright 2024 Huawei Technologies Co., Ltd | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================ | ||
""" | ||
MobileVit Model init | ||
""" | ||
from . import configuration_mobilevitv2, modeling_mobilevitv2 | ||
from ..mobilevit import feature_extraction_mobilevit, image_processing_mobilevit | ||
|
||
from .configuration_mobilevitv2 import * | ||
from ..mobilevit.feature_extraction_mobilevit import * | ||
from ..mobilevit.image_processing_mobilevit import * | ||
from .modeling_mobilevitv2 import * | ||
|
||
__all__ = [] | ||
__all__.extend(configuration_mobilevitv2.__all__) | ||
__all__.extend(feature_extraction_mobilevit.__all__) | ||
__all__.extend(image_processing_mobilevit.__all__) | ||
__all__.extend(modeling_mobilevitv2.__all__) |
145 changes: 145 additions & 0 deletions
145
mindnlp/transformers/models/mobilevitv2/configuration_mobilevitv2.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,145 @@ | ||
# coding=utf-8 | ||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""MobileViTV2 model configuration""" | ||
|
||
|
||
from ...configuration_utils import PretrainedConfig | ||
|
||
from ....utils import logging | ||
|
||
|
||
logger = logging.get_logger(__name__) | ||
|
||
|
||
class MobileViTV2Config(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a | ||
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a | ||
configuration with the defaults will yield a similar configuration to that of the MobileViTV2 | ||
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture. | ||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
Args: | ||
num_channels (`int`, *optional*, defaults to 3): | ||
The number of input channels. | ||
image_size (`int`, *optional*, defaults to 256): | ||
The size (resolution) of each image. | ||
patch_size (`int`, *optional*, defaults to 2): | ||
The size (resolution) of each patch. | ||
expand_ratio (`float`, *optional*, defaults to 2.0): | ||
Expansion factor for the MobileNetv2 layers. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`): | ||
The non-linear activation function (function or string) in the Transformer encoder and convolution layers. | ||
conv_kernel_size (`int`, *optional*, defaults to 3): | ||
The size of the convolutional kernel in the MobileViTV2 layer. | ||
output_stride (`int`, *optional*, defaults to 32): | ||
The ratio of the spatial resolution of the output to the resolution of the input image. | ||
classifier_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for attached classifiers. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
layer_norm_eps (`float`, *optional*, defaults to 1e-05): | ||
The epsilon used by the layer normalization layers. | ||
aspp_out_channels (`int`, *optional*, defaults to 512): | ||
Number of output channels used in the ASPP layer for semantic segmentation. | ||
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`): | ||
Dilation (atrous) factors used in the ASPP layer for semantic segmentation. | ||
aspp_dropout_prob (`float`, *optional*, defaults to 0.1): | ||
The dropout ratio for the ASPP layer for semantic segmentation. | ||
semantic_loss_ignore_index (`int`, *optional*, defaults to 255): | ||
The index that is ignored by the loss function of the semantic segmentation model. | ||
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`): | ||
The number of attention blocks in each MobileViTV2Layer | ||
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`): | ||
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer | ||
width_multiplier (`float`, *optional*, defaults to 1.0): | ||
The width multiplier for MobileViTV2. | ||
ffn_multiplier (`int`, *optional*, defaults to 2): | ||
The FFN multiplier for MobileViTV2. | ||
attn_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout in the attention layer. | ||
ffn_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout between FFN layers. | ||
Example: | ||
```python | ||
>>> from transformers import MobileViTV2Config, MobileViTV2Model | ||
>>> # Initializing a mobilevitv2-small style configuration | ||
>>> configuration = MobileViTV2Config() | ||
>>> # Initializing a model from the mobilevitv2-small style configuration | ||
>>> model = MobileViTV2Model(configuration) | ||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "mobilevitv2" | ||
|
||
def __init__( | ||
self, | ||
num_channels=3, | ||
image_size=256, | ||
patch_size=2, | ||
expand_ratio=2.0, | ||
hidden_act="swish", | ||
conv_kernel_size=3, | ||
output_stride=32, | ||
classifier_dropout_prob=0.1, | ||
initializer_range=0.02, | ||
layer_norm_eps=1e-5, | ||
aspp_out_channels=512, | ||
atrous_rates=[6, 12, 18], | ||
aspp_dropout_prob=0.1, | ||
semantic_loss_ignore_index=255, | ||
n_attn_blocks=[2, 4, 3], | ||
base_attn_unit_dims=[128, 192, 256], | ||
width_multiplier=1.0, | ||
ffn_multiplier=2, | ||
attn_dropout=0.0, | ||
ffn_dropout=0.0, | ||
**kwargs, | ||
): | ||
super().__init__(**kwargs) | ||
|
||
self.num_channels = num_channels | ||
self.image_size = image_size | ||
self.patch_size = patch_size | ||
self.expand_ratio = expand_ratio | ||
self.hidden_act = hidden_act | ||
self.conv_kernel_size = conv_kernel_size | ||
self.output_stride = output_stride | ||
self.initializer_range = initializer_range | ||
self.layer_norm_eps = layer_norm_eps | ||
self.n_attn_blocks = n_attn_blocks | ||
self.base_attn_unit_dims = base_attn_unit_dims | ||
self.width_multiplier = width_multiplier | ||
self.ffn_multiplier = ffn_multiplier | ||
self.ffn_dropout = ffn_dropout | ||
self.attn_dropout = attn_dropout | ||
self.classifier_dropout_prob = classifier_dropout_prob | ||
|
||
# decode head attributes for semantic segmentation | ||
self.aspp_out_channels = aspp_out_channels | ||
self.atrous_rates = atrous_rates | ||
self.aspp_dropout_prob = aspp_dropout_prob | ||
self.semantic_loss_ignore_index = semantic_loss_ignore_index | ||
|
||
|
||
__all__=['MobileViTV2Config'] |
Oops, something went wrong.