Skip to content
/ numru Public

A high-performance scientific computation library.

License

Notifications You must be signed in to change notification settings

mjovanc/numru

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

96 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

numru

ci crates.io documentation

A high-performance scientific computation library written in Rust.

Motivation

Numru is a scientific computation library that aims to provide a high-performance, easy-to-use, and flexible API for numerical operations. It is inspired by NumPy, a popular numerical computation library in Python. Numru is designed to be a fundamental library for scientific computing with Rust.

Get Started

This getting started guide might change and should not be a source of absolute truth. Check the unit tests and in examples if you want to stay up to date with how things should be done. Some APIs will most likely be changed in the future.

[dependencies]
numru = "0.2.0"

And a simple code:

use numru::arr;
use std::f64::consts::{E, PI, TAU};

fn main() {
    let a = arr![42, -17, 256, 3, 99, -8];
    println!("a.shape() = {:?}", a.shape());
    a.visualize().execute();

    let b = arr![[TAU, -PI, 1.61], [E, 0.98, -7.42], [4.67, -0.45, 8.88]];
    println!("\nb.shape() = {:?}", b.shape());
    b.visualize()
        .decimal_points(1)
        .execute();

    let c = arr![
        [[101, 202, 303], [404, 505, 606]],
        [[-707, -808, -909], [111, 222, 333]]
    ];
    println!("\nc.shape() = {:?}", c.shape());
    c.visualize().execute();
}

Output of the code above:

a.shape() = Ix { dims: [6] }
[42, -17, 256, 3, 99, -8]

b.shape() = Ix { dims: [3, 3] }
[
   [6.3, -3.1, 1.6 ]
   [2.7, 1.0 , -7.4]
   [4.7, -0.5, 8.9 ]
]

c.shape() = Ix { dims: [2, 2, 3] }
[
   [
      [101 , 202 , 303 ]
      [404 , 505 , 606 ]
   ]
   [
      [-707, -808, -909]
      [111 , 222 , 333 ]
   ]
]

Features

Numru will offer a variety of different numerical operations and data types. It is intended to be a fundamental library for scientific computing with Rust.

Supported Data Types

  • i64
  • f64

Planned Data Types (Future)

  • i8, i16, i32, i128
  • u8, u16, u32, u64, u128
  • f32
  • bool
  • String, &str

Supported Operations

Note that currently we only show the numru equivalents as the ones that are planned. They do not exist yet.

Operation Type NumPy Equivalent Numru Equivalent
Create Array Array Creation np.array([1, 2, 3]) arr![1, 2, 3]
Zeros Array Array Creation np.zeros((3,3)) zeros!(i64, 3, 3)
Ones Array Array Creation np.ones((3,3)) ones!(i64, 3, 3)
Arange Array Creation np.arange(start, stop, step) 🚧
Linspace Array Creation np.linspace(start, stop, num) 🚧
Mean Reduction np.mean(a) 🚧
Min Reduction np.min(a) a.min().compute()
Max Reduction np.max(a) a.max().compute()
Dot Product Linear Algebra np.dot(a, b) 🚧
Reshape Manipulation a.reshape((4, 3, 3)) 🚧
Concatenate Manipulation np.concatenate([a, b], axis=0) 🚧
Element-wise Add Element-wise Ops a + b 🚧
Element-wise Sub Element-wise Ops a - b 🚧
Element-wise Mul Element-wise Ops a * b 🚧
Element-wise Div Element-wise Ops a / b 🚧

Utility Features

These utility features help with visualization, debugging, array exploration and more.

Feature Type Numru Description
Visualization Visualization a.visualize().execute() Print an array in a human-readable format
Shape Inspection Introspection a.shape() Get the shape of the array
Data Type Check Introspection a.dtype() Retrieve the data type of the array

License

The MIT License.

About

A high-performance scientific computation library.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages