A high-performance scientific computation library written in Rust.
Numru is a scientific computation library that aims to provide a high-performance, easy-to-use, and flexible API for numerical operations. It is inspired by NumPy, a popular numerical computation library in Python. Numru is designed to be a fundamental library for scientific computing with Rust.
This getting started guide might change and should not be a source of absolute truth.
Check the unit tests and in examples
if you want to stay up to date with how things should be done. Some APIs will most likely be changed in the future.
[dependencies]
numru = "0.2.0"
And a simple code:
use numru::arr;
use std::f64::consts::{E, PI, TAU};
fn main() {
let a = arr![42, -17, 256, 3, 99, -8];
println!("a.shape() = {:?}", a.shape());
a.visualize().execute();
let b = arr![[TAU, -PI, 1.61], [E, 0.98, -7.42], [4.67, -0.45, 8.88]];
println!("\nb.shape() = {:?}", b.shape());
b.visualize()
.decimal_points(1)
.execute();
let c = arr![
[[101, 202, 303], [404, 505, 606]],
[[-707, -808, -909], [111, 222, 333]]
];
println!("\nc.shape() = {:?}", c.shape());
c.visualize().execute();
}
Output of the code above:
a.shape() = Ix { dims: [6] }
[42, -17, 256, 3, 99, -8]
b.shape() = Ix { dims: [3, 3] }
[
[6.3, -3.1, 1.6 ]
[2.7, 1.0 , -7.4]
[4.7, -0.5, 8.9 ]
]
c.shape() = Ix { dims: [2, 2, 3] }
[
[
[101 , 202 , 303 ]
[404 , 505 , 606 ]
]
[
[-707, -808, -909]
[111 , 222 , 333 ]
]
]
Numru will offer a variety of different numerical operations and data types. It is intended to be a fundamental library for scientific computing with Rust.
- i64
- f64
- i8, i16, i32, i128
- u8, u16, u32, u64, u128
- f32
- bool
- String, &str
Note that currently we only show the numru equivalents as the ones that are planned. They do not exist yet.
Operation | Type | NumPy Equivalent | Numru Equivalent |
---|---|---|---|
Create Array | Array Creation | np.array([1, 2, 3]) |
arr![1, 2, 3] |
Zeros Array | Array Creation | np.zeros((3,3)) |
zeros!(i64, 3, 3) |
Ones Array | Array Creation | np.ones((3,3)) |
ones!(i64, 3, 3) |
Arange | Array Creation | np.arange(start, stop, step) |
🚧 |
Linspace | Array Creation | np.linspace(start, stop, num) |
🚧 |
Mean | Reduction | np.mean(a) |
🚧 |
Min | Reduction | np.min(a) |
a.min().compute() |
Max | Reduction | np.max(a) |
a.max().compute() |
Dot Product | Linear Algebra | np.dot(a, b) |
🚧 |
Reshape | Manipulation | a.reshape((4, 3, 3)) |
🚧 |
Concatenate | Manipulation | np.concatenate([a, b], axis=0) |
🚧 |
Element-wise Add | Element-wise Ops | a + b |
🚧 |
Element-wise Sub | Element-wise Ops | a - b |
🚧 |
Element-wise Mul | Element-wise Ops | a * b |
🚧 |
Element-wise Div | Element-wise Ops | a / b |
🚧 |
These utility features help with visualization, debugging, array exploration and more.
Feature | Type | Numru | Description |
---|---|---|---|
Visualization | Visualization | a.visualize().execute() |
Print an array in a human-readable format |
Shape Inspection | Introspection | a.shape() |
Get the shape of the array |
Data Type Check | Introspection | a.dtype() |
Retrieve the data type of the array |
The MIT License.