Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mixtral fix: match reference with standalone script #2054

Merged
merged 1 commit into from
Jan 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 16 additions & 71 deletions language/mixtral-8x7b/SUT.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,12 @@
log = logging.getLogger("Mixtral-8x7B-Instruct-v0.1")

gen_kwargs = {
"early_stopping": True,
"max_new_tokens": 1024,
# "min_new_tokens": 1,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can remove the comment

"min_new_tokens": 2,
"num_beams": 1,
"max_new_tokens": 1024,
"do_sample": False,
"temperature": None,
"top_p": None,
}


Expand Down Expand Up @@ -238,80 +239,30 @@ def process_queries(self):
input_masks_tensor = []
input_len = []
input_dataset = []
batch_texts = []
datasets = []
for q in qitem:
input_ids_tensor.append(
pad(
self.data_object.input_ids[q.index],
(
max_seq_len -
self.data_object.input_lens[q.index],
0,
0,
0,
),
value=self.tokenizer.pad_token_id,
)
)
input_masks_tensor.append(
pad(
self.data_object.attention_masks[q.index],
(
max_seq_len -
self.data_object.input_lens[q.index],
0,
0,
0,
),
value=0,
)
)
batch_texts.append(self.data_object.input_texts[q.index])
input_len.append(self.data_object.input_lens[q.index])

# In case we predict code generation, we can specify an
# additional stop sequence
input_dataset.append(
self.data_object.dataset_names[q.index])
input_ids_tensor = torch.cat(input_ids_tensor)
input_masks_tensor = torch.cat(input_masks_tensor)

assert input_ids_tensor.shape == input_masks_tensor.shape
assert input_ids_tensor.shape[0] <= self.batch_size
batch_ids = self.tokenizer.batch_encode_plus(batch_texts, return_tensors="pt", padding=True)
batch_ids = batch_ids.to(self.device)

tik2 = time.time()
logits_processor = LogitsProcessorList(
[StopAfterSequence(
self.tokenizer.eos_token_id, device=self.device)]
)
for i in range(len(input_ids_tensor)):
ids, masks, dataset = (
input_ids_tensor[i: i + 1],
input_masks_tensor[i: i + 1],
input_dataset[i],
)
pred_output_tokens = []
if dataset == "MBXP":
out = self.model.generate(
input_ids=ids,
attention_mask=masks,
pad_token_id=self.tokenizer.pad_token_id,
logits_processor=logits_processor,
**gen_kwargs,
)
else:
out = self.model.generate(
input_ids=ids,
attention_mask=masks,
pad_token_id=self.tokenizer.pad_token_id,
**gen_kwargs,
)
pred_output_tokens.append(out)
pred_output_tokens = torch.cat(pred_output_tokens)
_, length = batch_ids.input_ids.shape
out = self.model.generate(**batch_ids, num_return_sequences=1, **gen_kwargs)
pred_output_tokens = out
tik3 = time.time()

processed_output = self.data_object.postProcess(
pred_output_tokens,
input_seq_lens=input_len,
length=length,
query_id_list=query_ids,
dataset_list=input_dataset,
)

for i in range(len(qitem)):
Expand Down Expand Up @@ -342,10 +293,7 @@ def process_queries(self):

def load_model(self):
self.model = AutoModelForCausalLM.from_pretrained(
self.model_path,
device_map="auto",
low_cpu_mem_usage=True,
torch_dtype=self.amp_dtype,
self.model_path, device_map="auto", trust_remote_code=True
)
print("Loaded model")

Expand All @@ -362,10 +310,7 @@ def load_model(self):
pass

self.tokenizer = AutoTokenizer.from_pretrained(
self.model_path,
model_max_length=1024,
padding_side="left",
use_fast=False,
self.model_path, padding_side="left", trust_remote_code=True
)

self.tokenizer.pad_token = self.tokenizer.eos_token
Expand Down
29 changes: 25 additions & 4 deletions language/mixtral-8x7b/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@ def load_processed_dataset(self):
processed_data = pd.read_pickle(self.dataset_path)

input_tokens = processed_data["tok_input"]
self.input_texts = processed_data["input"].to_list()

self.input_ids = []
self.input_lens = []
Expand All @@ -85,12 +86,31 @@ def load_processed_dataset(self):
self.dataset_names.append(dataset)
print("Finished loading dataset.")


def remove_trailing_twos(self, lst, eos = 2):
count = 0
for num in reversed(lst):
if num == eos or num == 0:
count += 1
else:
break
return lst[:-count] if count > 0 else lst


def mbxp_stop(self, lst, stop_tokens = [13, 13940, 28832, 13]):
for i in range(len(lst) - len(stop_tokens) + 1):
if (lst[i:i+len(stop_tokens)] == stop_tokens).all():
return lst[:i+len(stop_tokens)]
return lst


def postProcess(
self,
out_tokens,
input_seq_lens=None,
length=None,
query_id_list=None,
sample_index_list=None,
dataset_list=None,
):
"""Postprocesses output prediction"""

Expand All @@ -106,13 +126,14 @@ def postProcess(
"""
# Everything is padded to max_len (1024), so prune the input and parse
# to numpy
output_seq = out_tokens[:, 1024:].cpu().numpy()
output_seq = out_tokens[:, length:].cpu().numpy()
aux_seq = []
assert len(query_id_list) == output_seq.shape[0]
for i in range(len(output_seq)):
aux = output_seq[i]
while len(output_seq[i]) <= 1:
aux = np.append(aux, self.tokenizer.eos_token_id)
aux = self.remove_trailing_twos(aux)
if (dataset_list[i] == "MBXP"):
aux = self.mbxp_stop(aux)
aux_seq.append(aux)
output_seq = np.stack(aux_seq)

Expand Down
Loading