Skip to content

tabnet 0.4.0

Compare
Choose a tag to compare
@cregouby cregouby released this 11 May 21:31
e5c5306

New features

  • Add explicit legend in autoplot.tabnet_fit() (#67)
  • Improve unsupervised vignette content. (#67)
  • tabnet_pretrain() now allows missing values in predictors. (#68)
  • tabnet_explain() now works for tabnet_pretrain models. (#68)
  • Allow missing-values values in predictor for unsupervised training. (#68)
  • Improve performance of random_obfuscator() torch_nn module. (#68)
  • Add support for early stopping (#69)
  • tabnet_fit() and predict() now allow missing values in predictors. (#76)
  • tabnet_config() now supports a num_workers= parameters to control parallel dataloading (#83)
  • Add a vignette on missing data (#83)
  • tabnet_config() now has a flag skip_importance to skip calculating feature importance (@egillax, #91)
  • Export and document tabnet_nn
  • Added min_grid.tabnet method for tune (@cphaarmeyer, #107)
  • Added tabnet_explain() method for parsnip models (@cphaarmeyer, #108)
  • tabnet_fit() and predict() now allow multi-outcome, all numeric or all factors but not mixed. (#118)

Bugfixes

  • tabnet_explain() is now correctly handling missing values in predictors. (#77)
  • dataloader can now use num_workers>0 (#83)
  • new default values for batch_size and virtual_batch_size improves performance on mid-range devices.
  • add default engine="torch" to tabnet parsnip model (#114)
  • fix autoplot() warnings turned into errors with {ggplot2} v3.4 (#113)