-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' of https://github.com/nu-radio/NuRadioMC into …
…birefringence
- Loading branch information
Showing
58 changed files
with
6,289 additions
and
1,184 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import time | ||
from NuRadioMC.SignalProp import analyticraytracing as ray | ||
from NuRadioReco.utilities import units | ||
from NuRadioMC.utilities import medium | ||
import NuRadioReco.framework.electric_field | ||
import logging | ||
from radiotools import helper as hp | ||
from radiotools import plthelpers as php | ||
logging.basicConfig(level=logging.INFO) | ||
logger = logging.getLogger('raytracing') | ||
# ray.cpp_available=False | ||
|
||
x1 = np.array([0, 0., -149.]) * units.m | ||
|
||
x2 = np.array([0, 0., 100]) * units.m | ||
x3 = np.array([200, 0., 100]) * units.m | ||
x4 = np.array([1000, 0., 100]) * units.m | ||
x5 = np.array([10000, 0., 100]) * units.m | ||
|
||
x_starts = [x1, x1, x1, x1, x5] | ||
x_stops = [x2, x3, x4, x5, x1] | ||
N = 5 | ||
|
||
receive_vectors = np.zeros((N, 2, 3)) * np.nan | ||
ray_tracing_C0 = np.zeros((N, 2)) * np.nan | ||
ray_tracing_C1 = np.zeros((N, 2)) * np.nan | ||
ray_tracing_solution_type = np.zeros((N, 2), dtype=int) * np.nan | ||
travel_times = np.zeros((N, 2)) * np.nan | ||
travel_distances = np.zeros((N, 2)) * np.nan | ||
|
||
ice = medium.southpole_simple() | ||
|
||
if 0: # for debug purpuses, plot the objective function | ||
fig2, ax2 = plt.subplots(1, 1) | ||
for i, (x_start, x_stop) in enumerate(zip(x_starts, x_stops)): | ||
r2d = ray.ray_tracing_2D(ice, log_level=logging.WARNING) | ||
logC0s = np.linspace(-0.9, 10, 10) | ||
oo = [r2d.obj_delta_y(t, x_start[np.array([0,2])], x_stop[np.array([0,2])]) for t in logC0s] | ||
ax2.plot(logC0s, oo, "-o") | ||
plt.show() | ||
|
||
fig, ax = plt.subplots(1, 1) | ||
for i, (x_start, x_stop) in enumerate(zip(x_starts, x_stops)): | ||
ax.plot(x_start[0], x_start[2], 'ko') | ||
print(f'finding solutions for {x_start} to {x_stop}') | ||
r = ray.ray_tracing(ice, log_level=logging.WARNING, use_cpp=False) | ||
r.set_start_and_end_point(x_start, x_stop) | ||
r.find_solutions() | ||
if(r.has_solution()): | ||
for iS in range(r.get_number_of_solutions()): | ||
ray_tracing_C0[i, iS] = r.get_results()[iS]['C0'] | ||
ray_tracing_solution_type[i, iS] = r.get_solution_type(iS) | ||
print(" Solution %d, Type %d: " % (iS, ray_tracing_solution_type[i, iS])) | ||
R = r.get_path_length(iS) # calculate path length | ||
R2 = r.get_path_length(iS, analytic=False) # calculate path length | ||
T = r.get_travel_time(iS) # calculate travel time | ||
T2 = r.get_travel_time(iS, analytic=False) # calculate travel time | ||
print(f" Ray Distance {R/units.m:.3f}m {R2/units.m:.3f}m and Travel Time {T/units.ns:.3f}ns {T2/units.ns:.3f}ns") | ||
receive_vector = r.get_receive_vector(iS) | ||
receive_vectors[i, iS] = receive_vector | ||
zenith, azimuth = hp.cartesian_to_spherical(*receive_vector) | ||
print(" Receiving Zenith %.3f and Azimuth %.3f " % (zenith / units.deg, azimuth / units.deg)) | ||
|
||
# get focussing factor | ||
focusing = r.get_focusing(0) | ||
print(f" focusing factor = {focusing:.8f}") | ||
|
||
att = r.get_attenuation(iS, np.array([100, 200]) * units.MHz) | ||
print(f" attenuation: {att}") | ||
|
||
|
||
efield=NuRadioReco.framework.electric_field.ElectricField([0]) | ||
efield.set_trace(np.ones((3,200)), 1) | ||
efield2 = r.apply_propagation_effects(efield, 0) | ||
|
||
|
||
xx, zz = r.get_ray_path(iS) | ||
|
||
# # to readout the actual trace, we have to flatten to 2D | ||
# dX = x - x_start | ||
# dPhi = -np.arctan2(dX[1], dX[0]) | ||
# c, s = np.cos(dPhi), np.sin(dPhi) | ||
# R = np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))) | ||
# X1r = x_start | ||
# X2r = np.dot(R, x - x_start) + x_start | ||
# x1_2d = np.array([X1r[0], X1r[2]]) | ||
# x2_2d = np.array([X2r[0], X2r[2]]) | ||
# r_2d = ray.ray_tracing_2D(ice) | ||
# yy, zz = r_2d.get_path(x1_2d, x2_2d, ray_tracing_C0[i, iS]) | ||
ax.plot(xx, zz, '{}'.format(php.get_color_linestyle(i)), label='{} C0 = {:.4f}, f = {:.2f}'.format(ray_tracing_solution_type[i, iS], ray_tracing_C0[i, iS], focusing)) | ||
ax.plot(x_stop[0], x_stop[2], '{}{}-'.format('d', php.get_color(i))) | ||
|
||
ax.legend() | ||
ax.set_xlabel("y [m]") | ||
ax.set_ylabel("z [m]") | ||
fig.tight_layout() | ||
fig.savefig('example_to_air.png') | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.