Skip to content

#NeurIPS2021 Codes for Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning

License

Notifications You must be signed in to change notification settings

nzw0301/Understanding-Negative-Samples

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Codes of Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning

Create experimental env

  • Linux machine with four GPUs
  • Conda
  • Python's dependencies: this file:
conda create --name research --file spec-file.txt
conda activate research

External dependency

Apex install

git clone [email protected]:NVIDIA/apex.git
cd apex
git checkout 4ef930c1c884fdca5f472ab2ce7cb9b505d26c1a  # to fix the exact library version
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Detailed version of PyTorch

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch

Preparation

In NLP experiments, we need similar words constructed from fasttext's pre-trained word embeddings.

cd code
wget https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip
python nlp_construct_simiar_data.py

Please fill the value of replace_data in conf/dataset/ag_news.yaml with the generated file's path. For example,

replace_data: /home/nzw/code/ag_replace_ids.npy

Training

Please run content of all scripts in ./scripts/**/train/ under code.

Evaluation

After training, please run ./gather_weights.py to generate text files for evaluation.

Please run content of all scripts in ./scripts/**/eval/ under code as well.

For the AG news dataset, please run code/notebooks/filter_ag_news.ipynb after evaluation of mean classifier before the other evaluation scripts such as linear classifier and bound computation.

To obtain all figures and tables in the paper, you run notebooks in code/notebooks/. The codes save generated figures and tables into ./doc/figs and ./doc/tabs, respectively.

Related resources

Reference

@inproceedings{NS2021,
    title     = {Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning},
    author    = {Kento Nozawa, Issei Sato},
    year      = {2021},
    booktitle = {NeurIPS},
    pages     = {5784--5797},
}

About

#NeurIPS2021 Codes for Understanding Negative Samples in Instance Discriminative Self-supervised Representation Learning

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published