Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

src: cpu: aarch64: lowp_matmul_sq: Make weights constant #2212

Draft
wants to merge 3 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 10 additions & 1 deletion src/common/convolution_pd.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
/*******************************************************************************
* Copyright 2016-2024 Intel Corporation
* Copyright 2024 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -234,8 +235,16 @@ struct convolution_pd_t : public primitive_desc_t {
|| invariant_dst_md()->data_type == dst_dt)
&& (acc_dt == data_type::undef
|| desc_.accum_data_type == acc_dt);
if (with_bias() && bia_dt != data_type::undef)
if (with_bias() && bia_dt != data_type::undef) {
#ifdef __aarch64__
// ACL only supports s32 bias for quantization. Therefore internally
// we convert from f32 to s32. So here the types doesn't match.
if (utils::one_of(
dst_dt, data_type_t::dnnl_s8, data_type_t::dnnl_u8))
return ok;
#endif
ok = ok && invariant_bia_md()->data_type == bia_dt;
}
return ok;
}

Expand Down
1 change: 1 addition & 0 deletions src/common/memory_tracking.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -179,6 +179,7 @@ enum {
key_conv_amx_wsp_buffer,
key_conv_bia_reduction,
key_conv_bias_bf16_convert_wsp,
key_conv_bias_s32_convert,
key_conv_cudnn,
key_conv_cudnn_algo,
key_conv_cudnn_filter,
Expand Down
29 changes: 23 additions & 6 deletions src/cpu/aarch64/acl_convolution_utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,13 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
everyone_is(data_type::f16, src_d.data_type(),
wei_d.data_type(), dst_d.data_type()),
everyone_is(data_type::bf16, src_d.data_type(),
wei_d.data_type(), dst_d.data_type())),
" src, dst and wei must be fp16, bf16 or fp32");
wei_d.data_type(), dst_d.data_type()),
everyone_is(data_type::s8, src_d.data_type(),
wei_d.data_type(), dst_d.data_type()),
(everyone_is(data_type::u8, src_d.data_type(),
dst_d.data_type())
&& wei_d.data_type() == data_type::s8)),
" src, dst and wei must be s8, u8, bf16, fp16 or fp32");
// batch size
const int mb = src_d.dims()[0];

Expand Down Expand Up @@ -165,7 +170,8 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
: arm_compute::DataLayout::NCHW;

// all have the same datatype
auto acl_data_type = acl_utils::get_acl_data_t(src_d.data_type());
auto acl_data_type
= acl_utils::get_acl_data_t(src_d.data_type(), acp.is_quantized);

// clang-format off
acp.src_tensor_info = arm_compute::TensorInfo(
Expand All @@ -179,8 +185,9 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
is_nhwc ? arm_compute::TensorShape(ic, kw, kh, oc) :
arm_compute::TensorShape(kw, kh, ic, oc),
1,
acl_data_type,
acl_utils::get_acl_data_t(wei_d.data_type(), acp.is_quantized),
acl_layout);

if(is_depthwise) {
// We need to set that values are not constant so that we
// we can update them in-place in ACL
Expand All @@ -198,10 +205,20 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
acp.with_bias ? arm_compute::TensorShape(oc)
: arm_compute::TensorShape(),
1,
acl_data_type,
acp.is_quantized ? acl_utils::get_acl_data_t(data_type::s32) : acl_data_type,
acl_layout);
// clang-format on

if (acp.is_quantized) {
// ACL rejects the operation if quantization information is empty during configuration.
// Since the correct parameters are not available at this stage, we provide placeholder values.
// These values are then updated with the correct ones during the run stage.
arm_compute::QuantizationInfo qi {1.0, 0, true};
acp.src_tensor_info.set_quantization_info(qi);
acp.wei_tensor_info.set_quantization_info(qi);
acp.dst_tensor_info.set_quantization_info(qi);
}

// ACL Winograd is not prepared for fixed format kernels
if (acp.alg_winograd) {
const bool is_1d = ndims == 3;
Expand All @@ -216,7 +233,7 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
// Are we allowed to cast down to bf16 or not?
acp.fast_math
= one_of(attr.fpmath_.mode_, fpmath_mode::bf16, fpmath_mode::any);
if (is_depthwise) {
if (is_depthwise || acp.is_quantized) {
// There is no support for fixed format kernels for depthwise convolution
// in ACL so we are going to use weight format that we set up earlier
return status::success;
Expand Down
98 changes: 85 additions & 13 deletions src/cpu/aarch64/acl_convolution_utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,11 @@
#include <map>
#include "acl_post_ops.hpp"
#include "acl_utils.hpp"
#include "arm_compute/runtime/experimental/operators/CpuDepthwiseConv2d.h"
#include "cpu/cpu_convolution_pd.hpp"
#include <type_traits>
#include "cpu/cpu_primitive.hpp"

#include "arm_compute/runtime/experimental/operators/CpuGemmConv2d.h"

namespace dnnl {
namespace impl {
namespace cpu {
Expand All @@ -44,6 +46,8 @@ struct acl_conv_conf_t {
// algorithm can be set to algorithm::convolution_auto and later on we need to
// skip fixed-format protocol as ACL Winograd does not support it.
bool alg_winograd;
// currently, only CpuGemmConv2d has the static quantization update interface.
bool is_quantized;
arm_compute::TensorInfo src_tensor_info;
arm_compute::TensorInfo wei_tensor_info;
arm_compute::TensorInfo bia_tensor_info;
Expand All @@ -70,11 +74,13 @@ status_t acl_init_conf(acl_conv_conf_t &acp, memory_desc_t &src_md,
using conv_key_t = decltype(memory_tracking::names::key_gemm_tmp_buffer);

template <typename op_t, typename post_ops_t>
status_t init_scratchpad(op_t &conv, memory_tracking::registrar_t &scratchpad,
status_t init_scratchpad(const op_t &conv,
memory_tracking::registrar_t &scratchpad,
const std::map<int, conv_key_t> &conv_keys, engine_t *engine,
post_ops_t &post_ops, dnnl::impl::post_ops_t &attr_post_ops,
arm_compute::ActivationLayerInfo &act_info, bool &use_dst_acc_for_sum,
const dnnl::impl::memory_desc_t &dst_md) {
const dnnl::impl::memory_desc_t &dst_md,
const dnnl::impl::memory_desc_t &bias_md, const bool is_quantized) {

// Book temp mem.
const auto aux_mem_req = conv.workspace();
Expand All @@ -95,14 +101,20 @@ status_t init_scratchpad(op_t &conv, memory_tracking::registrar_t &scratchpad,
dst_d.data_type_size());
}

if (is_quantized && bias_md.format_kind != format_kind::undef) {
const memory_desc_wrapper bias_d(&bias_md);
scratchpad.book(memory_tracking::names::key_conv_bias_s32_convert,
bias_d.nelems(), bias_d.data_type_size());
}

return status::success;
}

template <typename conv_obj_t, typename conv_pd_t, typename src_data_t,
typename wei_data_t = src_data_t, typename dst_data_t = src_data_t,
typename bia_data_t = src_data_t>
status_t execute_forward_conv_acl(const exec_ctx_t &ctx,
conv_obj_t *acl_conv_obj, const conv_pd_t *pd,
conv_obj_t *acl_conv_obj, const conv_pd_t *pd_,
const std::map<int, conv_key_t> &conv_keys) {

auto src_base = CTX_IN_MEM(const src_data_t *, DNNL_ARG_SRC);
Expand All @@ -115,16 +127,49 @@ status_t execute_forward_conv_acl(const exec_ctx_t &ctx,
arm_compute::Tensor bia_tensor = nullptr;
arm_compute::Tensor dst_tensor;

auto const acp = pd->acp_;
auto const acp = pd_->acp_;
src_tensor.allocator()->init(acp.src_tensor_info);
wei_tensor.allocator()->init(acp.wei_tensor_info);
dst_tensor.allocator()->init(acp.dst_tensor_info);

const auto scratchpad = ctx.get_scratchpad_grantor();

if (acp.is_quantized) {
// DEFINE_(ARG|ZERO)... demands 'pd' as a function
auto pd = [pd_] { return pd_; };

DEFINE_ARG_SCALES_BUFFER(src_scale, DNNL_ARG_SRC);
DEFINE_ZERO_POINT_VALUE(src_zero_point, DNNL_ARG_SRC);
DEFINE_ARG_SCALES_BUFFER(wei_scale, DNNL_ARG_WEIGHTS);
DEFINE_ZERO_POINT_VALUE(wei_zero_point, DNNL_ARG_WEIGHTS);
DEFINE_ARG_SCALES_BUFFER(dst_scale, DNNL_ARG_DST);
DEFINE_ZERO_POINT_VALUE(dst_zero_point, DNNL_ARG_DST);

// s8s8s8 uses D = Sx*Sy*(XY + X*zy + Y*zx + zx*zy) and u8s8u8 uses D = Sx*Sy*(XW - X*zw - W*zx + zx*zw)
if (dst_tensor.info()->data_type() == arm_compute::DataType::QASYMM8) {
src_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(
*src_scale, -src_zero_point, true));
wei_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(
*wei_scale, -wei_zero_point, true));
} else {
src_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(
*src_scale, src_zero_point, true));
wei_tensor.info()->set_quantization_info(
arm_compute::QuantizationInfo(
*wei_scale, wei_zero_point, true));
}

// for efficiency reasons, OneDNN saves the inverse of the destination
dst_tensor.info()->set_quantization_info(arm_compute::QuantizationInfo(
1.0 / (*dst_scale), dst_zero_point, true));
}

src_tensor.allocator()->import_memory(const_cast<src_data_t *>(src_base));
wei_tensor.allocator()->import_memory(const_cast<wei_data_t *>(wei_base));

const auto scratchpad = ctx.get_scratchpad_grantor();

// If we have an unfused sum post op, put the result in a scratchpad tensor.
// Result will be summed to the dst during acl_post_ops.execute
auto dst_base = acp.use_dst_acc_for_sum
Expand All @@ -133,10 +178,30 @@ status_t execute_forward_conv_acl(const exec_ctx_t &ctx,
dst_tensor.allocator()->import_memory(dst_base);

if (acp.with_bias) {
auto bia_base = CTX_IN_MEM(const bia_data_t *, DNNL_ARG_BIAS);
bia_tensor.allocator()->init(acp.bia_tensor_info);
bia_tensor.allocator()->import_memory(
const_cast<bia_data_t *>(bia_base));
if (acp.is_quantized) {
auto bia_s32_base = scratchpad.get<uint32_t>(
memory_tracking::names::key_conv_bias_s32_convert);
auto bia_f32_base = CTX_IN_MEM(const float32_t *, DNNL_ARG_BIAS);
auto src_scale
= src_tensor.info()->quantization_info().uniform().scale;
auto wei_scale
= wei_tensor.info()->quantization_info().uniform().scale;
const float bias_scale = 1 / (src_scale * wei_scale);
const int num_elements
= acp.bia_tensor_info.total_size() / sizeof(float32_t);
parallel_nd(num_elements, [&](dim_t e) {
const auto b
= int32_t(std::round(bia_f32_base[e] * bias_scale));
bia_s32_base[e] = b;
});
bia_tensor.allocator()->init(acp.bia_tensor_info);
bia_tensor.allocator()->import_memory(bia_s32_base);
} else {
auto bia_base = CTX_IN_MEM(const bia_data_t *, DNNL_ARG_BIAS);
bia_tensor.allocator()->init(acp.bia_tensor_info);
bia_tensor.allocator()->import_memory(
const_cast<bia_data_t *>(bia_base));
}
}

// Constness of the weight tensor matters for depthwise conv in ACL.
Expand Down Expand Up @@ -167,10 +232,17 @@ status_t execute_forward_conv_acl(const exec_ctx_t &ctx,
}
}

if (acp.is_quantized) {
arm_compute::experimental::op::CpuGemmConv2d *conv
= dynamic_cast<arm_compute::experimental::op::CpuGemmConv2d *>(
&acl_conv_obj->conv);
if (conv) conv->update_quantization_parameters(pack);
}

acl_conv_obj->conv.run(pack);

void *dst = dst_tensor.buffer();
pd->post_ops.execute(ctx, dst);
pd_->post_ops.execute(ctx, dst);

return status::success;
}
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/aarch64/acl_depthwise_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ status_t acl_depthwise_convolution_fwd_t::pd_t::init(engine_t *engine) {
auto scratchpad = scratchpad_registry().registrar();
return init_scratchpad(conv, scratchpad, depthwise_conv_keys, engine,
post_ops, attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum,
dst_md_);
dst_md_, bias_md_, false);
}

status_t acl_depthwise_convolution_fwd_t::init(engine_t *engine) {
Expand Down
32 changes: 27 additions & 5 deletions src/cpu/aarch64/acl_gemm_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -52,17 +52,20 @@ template <data_type_t src_t, data_type_t wei_t, data_type_t dst_t,
status_t acl_gemm_convolution_fwd_t<src_t, wei_t, dst_t, bia_t>::pd_t::init(
engine_t *engine) {
using namespace data_type;
using smask_t = primitive_attr_t::skip_mask_t;

bool ok = is_fwd() && set_default_alg_kind(alg_kind::convolution_direct)
&& expect_data_types(src_t, wei_t, bia_t, dst_t, undef)
&& !has_zero_dim_memory()
&& attr()->has_default_values(
smask_t::post_ops | smask_t::fpmath_mode, dst_t);
&& !has_zero_dim_memory() && output_scales_mask_ok()
&& zero_points_ok();

if (!ok) return status::unimplemented;

if (weights_md_.ndims != 4) return status::unimplemented;

// currently, only CpuGemmConv2d has the static quantization update interface.
acp_.is_quantized
= utils::one_of(dst_md_.data_type, data_type::s8, data_type::u8);

// General Compute Library checks, memory tags are also set there
CHECK(acl_convolution_utils::acl_init_conf(
acp_, src_md_, weights_md_, dst_md_, bias_md_, *desc(), *attr()));
Expand All @@ -82,7 +85,25 @@ status_t acl_gemm_convolution_fwd_t<src_t, wei_t, dst_t, bia_t>::pd_t::init(
auto scratchpad = scratchpad_registry().registrar();
const auto mem_req = conv.workspace();
return init_scratchpad(conv, scratchpad, gemm_conv_keys, engine, post_ops,
attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum, dst_md_);
attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum, dst_md_,
bias_md_, acp_.is_quantized);
}

template <data_type_t src_t, data_type_t wei_t, data_type_t dst_t,
data_type_t bia_t>
bool acl_gemm_convolution_fwd_t<src_t, wei_t, dst_t,
bia_t>::pd_t::output_scales_mask_ok() const {
int mask_src = attr()->scales_.get(DNNL_ARG_SRC).mask_;
int mask_wei = attr()->scales_.get(DNNL_ARG_WEIGHTS).mask_;
int mask_dst = attr()->scales_.get(DNNL_ARG_DST).mask_;
return mask_src == 0 && mask_wei == 0 && mask_dst == 0;
}

template <data_type_t src_t, data_type_t wei_t, data_type_t dst_t,
data_type_t bia_t>
bool acl_gemm_convolution_fwd_t<src_t, wei_t, dst_t,
bia_t>::pd_t::zero_points_ok() const {
return attr()->zero_points_.common();
}

template <data_type_t src_t, data_type_t wei_t, data_type_t dst_t,
Expand Down Expand Up @@ -133,6 +154,7 @@ using namespace data_type;
template struct acl_gemm_convolution_fwd_t<f32>;
template struct acl_gemm_convolution_fwd_t<f16>;
template struct acl_gemm_convolution_fwd_t<s8, s8, s8, s32>;
template struct acl_gemm_convolution_fwd_t<u8, s8, u8, s32>;

} // namespace aarch64
} // namespace cpu
Expand Down
2 changes: 2 additions & 0 deletions src/cpu/aarch64/acl_gemm_convolution.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -44,6 +44,8 @@ struct acl_gemm_convolution_fwd_t : public primitive_t {
"gemm:acl", acl_gemm_convolution_fwd_t, USE_GLOBAL_SCRATCHPAD);

status_t init(engine_t *engine);
bool output_scales_mask_ok() const;
bool zero_points_ok() const;

acl_conv_conf_t acp_;
acl_post_ops_t post_ops;
Expand Down
2 changes: 1 addition & 1 deletion src/cpu/aarch64/acl_indirect_gemm_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ status_t acl_indirect_gemm_convolution_fwd_t::pd_t::init(engine_t *engine) {
auto scratchpad = scratchpad_registry().registrar();
return init_scratchpad(conv, scratchpad, indirect_conv_keys, engine,
post_ops, attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum,
dst_md_);
dst_md_, bias_md_, false);
}

} // namespace aarch64
Expand Down
3 changes: 2 additions & 1 deletion src/cpu/aarch64/acl_winograd_convolution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,8 @@ status_t acl_wino_convolution_fwd_t::pd_t::init(engine_t *engine) {
auto scratchpad = scratchpad_registry().registrar();
const auto aux_mem = conv.workspace();
return init_scratchpad(conv, scratchpad, wino_conv_keys, engine, post_ops,
attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum, dst_md_);
attr_.post_ops_, acp_.act_info, acp_.use_dst_acc_for_sum, dst_md_,
bias_md_, acp_.is_quantized);
}

status_t acl_wino_convolution_fwd_t::init(engine_t *engine) {
Expand Down
Loading
Loading