Skip to content

Commit

Permalink
Merge pull request #4636 from openjournals/joss.05713
Browse files Browse the repository at this point in the history
Merging automatically
  • Loading branch information
editorialbot authored Oct 1, 2023
2 parents b3c92d2 + 823a060 commit 01bf22b
Show file tree
Hide file tree
Showing 4 changed files with 1,030 additions and 0 deletions.
346 changes: 346 additions & 0 deletions joss.05713/10.21105.joss.05713.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,346 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20231001T124152-064289b2f65e7306fb75b358115e3a310c96c586</doi_batch_id>
<timestamp>20231001124152</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>10</month>
<year>2023</year>
</publication_date>
<journal_volume>
<volume>8</volume>
</journal_volume>
<issue>90</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PyDGN: a Python Library for Flexible and Reproducible
Research on Deep Learning for Graphs</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Federico</given_name>
<surname>Errica</surname>
<ORCID>https://orcid.org/0000-0001-5181-2904</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Davide</given_name>
<surname>Bacciu</surname>
<ORCID>https://orcid.org/0000-0001-5213-2468</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Alessio</given_name>
<surname>Micheli</surname>
<ORCID>https://orcid.org/0000-0001-5764-5238</ORCID>
</person_name>
</contributors>
<publication_date>
<month>10</month>
<day>01</day>
<year>2023</year>
</publication_date>
<pages>
<first_page>5713</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.05713</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.8396373</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/5713</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.05713</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.05713</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.05713.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="1997sperduti_supervised_1997">
<article_title>Supervised neural networks for the
classification of structures</article_title>
<author>Sperduti</author>
<journal_title>IEEE Transactions on Neural
Networks</journal_title>
<issue>3</issue>
<volume>8</volume>
<doi>10.1109/72.572108</doi>
<cYear>1997</cYear>
<unstructured_citation>Sperduti, A., &amp; Starita, A.
(1997). Supervised neural networks for the classification of structures.
IEEE Transactions on Neural Networks, 8(3), 714–735.
https://doi.org/10.1109/72.572108</unstructured_citation>
</citation>
<citation key="2009scarselli_graph_2009">
<article_title>The graph neural network
model</article_title>
<author>Scarselli</author>
<journal_title>IEEE Transactions on Neural
Networks</journal_title>
<issue>1</issue>
<volume>20</volume>
<doi>10.1109/TNN.2008.2005605</doi>
<cYear>2009</cYear>
<unstructured_citation>Scarselli, F., Gori, M., Tsoi, A. C.,
Hagenbuchner, M., &amp; Monfardini, G. (2009). The graph neural network
model. IEEE Transactions on Neural Networks, 20(1), 61–80.
https://doi.org/10.1109/TNN.2008.2005605</unstructured_citation>
</citation>
<citation key="2009micheli_neural_2009">
<article_title>Neural network for graphs: A contextual
constructive approach</article_title>
<author>Micheli</author>
<journal_title>IEEE Transactions on Neural
Networks</journal_title>
<issue>3</issue>
<volume>20</volume>
<doi>10.1109/TNN.2008.2010350</doi>
<cYear>2009</cYear>
<unstructured_citation>Micheli, A. (2009). Neural network
for graphs: A contextual constructive approach. IEEE Transactions on
Neural Networks, 20(3), 498–511.
https://doi.org/10.1109/TNN.2008.2010350</unstructured_citation>
</citation>
<citation key="2017bronstein_geometric_2017">
<article_title>Geometric deep learning: Going beyond
Euclidean data</article_title>
<author>Bronstein</author>
<journal_title>IEEE Signal Processing
Magazine</journal_title>
<issue>4</issue>
<volume>34</volume>
<doi>10.1109/MSP.2017.2693418</doi>
<cYear>2017</cYear>
<unstructured_citation>Bronstein, M. M., Bruna, J., LeCun,
Y., Szlam, A., &amp; Vandergheynst, P. (2017). Geometric deep learning:
Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4), 25.
18–42. https://doi.org/10.1109/MSP.2017.2693418</unstructured_citation>
</citation>
<citation key="2017gilmer_neural_2017">
<article_title>Neural message passing for quantum
chemistry</article_title>
<author>Gilmer</author>
<journal_title>Proceedings of the 34th International
Conference on Machine Learning (ICML)</journal_title>
<cYear>2017</cYear>
<unstructured_citation>Gilmer, J., Schoenholz, S. S., Riley,
P. F., Vinyals, O., &amp; Dahl, G. E. (2017). Neural message passing for
quantum chemistry. Proceedings of the 34th International Conference on
Machine Learning (ICML), 1263–1272.</unstructured_citation>
</citation>
<citation key="2017hamilton_representation_2017">
<article_title>Representation learning on graphs: Methods
and applications</article_title>
<author>Hamilton</author>
<journal_title>IEEE Data Engineering
Bulletin</journal_title>
<issue>3</issue>
<volume>40</volume>
<cYear>2017</cYear>
<unstructured_citation>Hamilton, W. L., Ying, R., &amp;
Leskovec, J. (2017). Representation learning on graphs: Methods and
applications. IEEE Data Engineering Bulletin, 40(3),
52–74.</unstructured_citation>
</citation>
<citation key="2018lipton_troubling_2018">
<article_title>Troubling trends in machine learning
scholarship</article_title>
<author>Lipton</author>
<journal_title>arXiv preprint
arXiv:1807.03341</journal_title>
<cYear>2018</cYear>
<unstructured_citation>Lipton, Z. C., &amp; Steinhardt, J.
(2018). Troubling trends in machine learning scholarship. arXiv Preprint
arXiv:1807.03341.</unstructured_citation>
</citation>
<citation key="2018shchur_pitfalls_2018">
<article_title>Pitfalls of graph neural network
evaluation</article_title>
<author>Shchur</author>
<journal_title>Workshop on Relational Representation
Learning, Neural Information Processing Systems
(NeurIPS)</journal_title>
<cYear>2018</cYear>
<unstructured_citation>Shchur, O., Mumme, M., Bojchevski,
A., &amp; Günnemann, S. (2018). Pitfalls of graph neural network
evaluation. Workshop on Relational Representation Learning, Neural
Information Processing Systems (NeurIPS).</unstructured_citation>
</citation>
<citation key="2019fey_fast_2019">
<article_title>Fast graph representation learning with
PyTorch Geometric</article_title>
<author>Fey</author>
<journal_title>Representation Learning on Graphs and
Manifolds Workshop, International Conference on Learning Representations
(ICLR)</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Fey, M., &amp; Lenssen, J. E. (2019).
Fast graph representation learning with PyTorch Geometric.
Representation Learning on Graphs and Manifolds Workshop, International
Conference on Learning Representations (ICLR).</unstructured_citation>
</citation>
<citation key="2019paszke_pytorch_2019">
<article_title>Pytorch: An imperative style,
high-performance deep learning library</article_title>
<author>Paszke</author>
<journal_title>Proceedings of the 33rd conference on neural
information processing systems (NeurIPS)</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., &amp; others. (2019). Pytorch: An imperative style,
high-performance deep learning library. Proceedings of the 33rd
Conference on Neural Information Processing Systems
(NeurIPS).</unstructured_citation>
</citation>
<citation key="2020_you_design_2020">
<article_title>Design space for graph neural
networks</article_title>
<author>You</author>
<journal_title>Proceedings of the 34th conference on neural
information processing systems (NeurIPS)</journal_title>
<cYear>2020</cYear>
<unstructured_citation>You, J., Ying, Z., &amp; Leskovec, J.
(2020). Design space for graph neural networks. Proceedings of the 34th
Conference on Neural Information Processing Systems
(NeurIPS).</unstructured_citation>
</citation>
<citation key="2019wang_dgl_2019">
<article_title>Deep graph library: A graph-centric,
highly-performant package for graph neural networks</article_title>
<author>Wang</author>
<journal_title>arXiv preprint
arXiv:1909.01315</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Wang, M., Zheng, D., Ye, Z., Gan, Q.,
Li, M., Song, X., Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T.,
Karypis, G., Li, J., &amp; Zhang, Z. (2019). Deep graph library: A
graph-centric, highly-performant package for graph neural networks.
arXiv Preprint arXiv:1909.01315.</unstructured_citation>
</citation>
<citation key="2020bacciu_gentle_2020">
<article_title>A gentle introduction to deep learning for
graphs</article_title>
<author>Bacciu</author>
<journal_title>Neural Networks</journal_title>
<volume>129</volume>
<doi>10.1016/j.neunet.2020.06.006</doi>
<cYear>2020</cYear>
<unstructured_citation>Bacciu, D., Errica, F., Micheli, A.,
&amp; Podda, M. (2020). A gentle introduction to deep learning for
graphs. Neural Networks, 129, 203–221.
https://doi.org/10.1016/j.neunet.2020.06.006</unstructured_citation>
</citation>
<citation key="2020errica_fair_2020">
<article_title>A fair comparison of graph neural networks
for graph classification</article_title>
<author>Errica</author>
<journal_title>8th International Conference on Learning
Representations (ICLR)</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Errica, F., Podda, M., Bacciu, D.,
&amp; Micheli, A. (2020). A fair comparison of graph neural networks for
graph classification. 8th International Conference on Learning
Representations (ICLR).</unstructured_citation>
</citation>
<citation key="2020hu_open_2020">
<article_title>Open graph benchmark: Datasets for machine
learning on graphs</article_title>
<author>Hu</author>
<journal_title>Proceedings of the 34th conference on neural
information processing systems (NeurIPS)</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Hu, W., Fey, M., Zitnik, M., Dong,
Y., Ren, H., Liu, B., Catasta, M., &amp; Leskovec, J. (2020). Open graph
benchmark: Datasets for machine learning on graphs. Proceedings of the
34th Conference on Neural Information Processing Systems (NeurIPS),
22118–22133.</unstructured_citation>
</citation>
<citation key="2020wu_comprehensive_2020">
<article_title>A comprehensive survey on graph neural
networks</article_title>
<author>Wu</author>
<journal_title>IEEE Transactions on Neural Networks and
Learning Systems</journal_title>
<doi>10.1109/TNNLS.2020.2978386</doi>
<cYear>2020</cYear>
<unstructured_citation>Wu, Z., Pan, S., Chen, F., Long, G.,
Zhang, C., &amp; Philip, S. Y. (2020). A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning
Systems.
https://doi.org/10.1109/TNNLS.2020.2978386</unstructured_citation>
</citation>
<citation key="2021grattarola_graph_2021">
<article_title>Graph neural networks in TensorFlow and keras
with spektral</article_title>
<author>Grattarola</author>
<journal_title>IEEE Computational Intelligence
Magazine</journal_title>
<issue>1</issue>
<volume>16</volume>
<doi>10.1109/MCI.2020.3039072</doi>
<cYear>2021</cYear>
<unstructured_citation>Grattarola, D., &amp; Alippi, C.
(2021). Graph neural networks in TensorFlow and keras with spektral.
IEEE Computational Intelligence Magazine, 16(1), 99–106.
https://doi.org/10.1109/MCI.2020.3039072</unstructured_citation>
</citation>
<citation key="2021liu_dig_2021">
<article_title>DIG: A turnkey library for diving into graph
deep learning research</article_title>
<author>Liu</author>
<journal_title>Journal of Machine Learning
Research</journal_title>
<issue>240</issue>
<volume>22</volume>
<cYear>2021</cYear>
<unstructured_citation>Liu, M., Luo, Y., Wang, L., Xie, Y.,
Yuan, H., Gui, S., Yu, H., Xu, Z., Zhang, J., Liu, Y., Yan, K., Liu, H.,
Fu, C., Oztekin, B. M., Zhang, X., &amp; Ji, S. (2021). DIG: A turnkey
library for diving into graph deep learning research. Journal of Machine
Learning Research, 22(240), 1–9.</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading

0 comments on commit 01bf22b

Please sign in to comment.